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ABSTRACT

The similarity between objects is judged in a wid€eety of contexts from visual search
to categorization to face recognition. There i®aeaspondingly rich history of similarity
research, including empirical work and theoretioadels. However, the field lacks an
account of the real time neural processing dynawficsfferent similarity judgment
behaviors. Some accounts focus on the lower-lenasgsses that support similarity
judgments, but they do not capture a wide rangaonbnical behaviors, and they do not
account for the moment-to-moment stability andraxtgon of realistic neural object
representations. The goal of this dissertation sddress this need and present a broadly
applicable and neurally implemented model of obgaailarity judgments. |
accomplished this by adapting and expanding artiegiaeural process model of change
detection to capture a set of canonical, task-gésamilarity judgment behaviors. Target
behaviors to model were chosen by reviewing thelaiity judgment literature and
identifying prominent and consistent behavioratéet$. | tested each behavior for task-
generality across three experiments using threersigvsimilarity judgment tasks. The
following behaviors observed across all three taskged as modeling targets: the effect
of feature value comparisons, attentional modutatibfeature dimensions, sensitivity to
patterns of objects encountered over time, viotetiof minimality and triangle equality,
and a sensitivity to circular feature dimensioke Itolor hue. The model captured each
effect. The neural processes implied by captutiegé behaviors are discussed, along
with the broader theoretical implications of thedaband possibilities for its future

expansion.
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PUBLIC ABSTRACT

We compare objects and judge how similar or diffeteey are throughout our daily lives.
For example, we judge family relations from theitanity of faces, and we compare the
similarity of products as part of our purchasingidiens. Similarity is also critical to
specialist and industrial applications like measgithe uniformity of manufactured goods
or comparing x-ray images to judge tumor growth.

Psychologists know a great deal about the exaes thiat support similarity
judgments and the resulting patterns of behavior.ekample, we know how differences
in features such as color, size, and shape intasitttone another to influence similarity
judgments. We also know how memories of other dbjseen recently and how time
pressure or different goals influence similaritggments.

Less is known, however, about the neural procdssieind these similarity
judgments. The goal of this dissertation is tothls gap in knowledge by creating a
computer model that can predict and explain thet nve#-known similarity behaviors,
using neurally realistic cognitive processes. Tasiputer model links the neural activity
that supports similarity judgments to those presipstudied in the context of other
cognitive tasks. These connections will allow pgjobists to paint a more complete
picture of how we process and understand objedsneral.

The model also serves an important step towardtdagplications of machine
simulated artificial similarity judgments betweebjects. Machine-based similarity may
lead to accurate automatic second opinions on rakdiages or more efficient satellite or

surveillance image interpretation.
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CHAPTER 1

INTRODUCTION

Determining the visual similarity of objects ist@al for a wide variety of daily decisions:
we use facial resemblance to guess family relatiqss we identify similarities between
diagrams and scenes to assemble furniture or tigatavunfamiliar neighborhoods, we
compare and contrast produce at the grocery siquiek the ripest fruit, and we often
express explicit similarity judgments in the couo$enaking decisions about
categorization or analogies.

The core ingredients of similarity judgments ardlakeown: objects are compared
according to metric feature dimensions like catyape, and orientation. The relative
differences between compared objects along theserdiions serve as the principal
component of similarity judgments, whether thodtetknces are considered as continuous
measures (Shepard, 1987), binary match/non-mastimctions (Tversky, 1977), or in
terms of number of transformations to close théetkhce gap between objects (Hahn,
Chater, & Richardson, 2002). Similarity judgmenésé also been shown to be influenced
by an array of factors that are independent of imétature comparisons. For example, the
degree of judged similarity between two items daange if an experimenter switches the
order the items are mentioned (the “asymmetry’afféversky 1977). Judgments about
two objects also depend, in part, on how uniqueedhabjects are compared to other
previously seen objects, even if those other objat not currently present (Krumhansil,
1978).

Many formal, computational models exist that are &b quantitatively capture one

or more of these similarity judgment behaviors. S¢hmodels vary from purely abstract
1
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mathematical approaches that explicitly avoid angsion of biological implementation
(Tenenbaum & Griffiths, 2001) to neurally-inspireainnectionist models (Ashby, Paul, &
Maddox, 2011; Love, Medin, & Gureckis, 2003). Models also vary from those specifically
designed to capture an array of different simygutdgments across tasks (Pothos,
Busemeyer, & Trueblood, 2013) to those that implatnsemnilarity explicitly, but for a
single specific type of task or application of damity, like categorization (Kruschke,
1992).

The field lacks a model, however, that represemgagity judgment behaviors at
the level of neural processes and population dycsmithough not all models must exist
at a neural process level, there are several lieiefcapturing behaviors through neural
dynamics that have not yet been fully realized toy models in the field. First, behaviors
can sometimes originate among interactions at ¢ueah level, and these neural
interactions can be difficult to understand withauhodel that considers this level of
detail. For instance, neural models of colorblireinend opposite colored afterimages were
useful in clarifying the origin of these phenomémaisual cognition. These are
phenomena that do not themselves serve any highdeal of an organism, and they are
not easily explained or predicted by an abstraaehof color vision. Opponent process
theory, however (Hurvich & Jameson, 1957; Hering, 1964), did explain these results when
considering color vision from a neural basis oliisreceptors sensitive to opposing pairs
of colors. In the similarity judgment literaturenaural process model might be equally
useful in clarifying the origin of particular biase

Another reason to pursue a neural model of sinyigudgments is that existing
models of similarity have not dealt with particutamstraints imposed by the neural

implementation level. One constraint is that therakrepresentation of one object must
2
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remain stable in working memory as the second oligguerceived and compared. Current
models of similarity have not accounted for thigeleof neural process. For instance, in
connectionist models, objects are stored eith@resonsolidated nodes (e.g. Ashby, Paul,
& Maddox, 2011) or as vectors of feature dimensiodes (e.g., Kruschke, 1992) which
are activated either in parallel or kept abstraative (i.e., stored in the computer’s
memory) until the next objects must be processed.reural process sense, however,
memories are non-trivial to maintain with real timeural dynamics. Thus, it is possible
that the mechanistic basis for some similarity véra lies in the dynamics involved in
maintaining working memories over the interval betw perceiving compared objects. For
example, Tversky’s (1977) findings that similajigdggments can be asymmetric when
object order is reversed could plausibly be baseditferent patterns of memory decay,
interaction, or stability at a neural level durthg time interval between processing one
object and the next. A neural process model iddst method of revealing such
possibilities.

A second key constraint imposed by a neural progessis on the nature of the
representations that underlie similarity judgmehitghe similarity judgment literature,
many models posit representations over continu@ute€ian feature spaces. A Cartesian
feature space is a representational system whehepessible combination of values along
feature dimensions (like size, color, or shapejeggnts a point in a multidimensional
space at which an object could be represented.alloiss for an intuitive way to think
about object comparisons: in such a system, siityilean simply be based on the distance
(Euclidean or city-block) between two point objeatdlifferent locations in the feature
space. A Cartesian feature space quickly becomaslheimplausible, however, when its

neural resource demand is considered in natuadigtiations. If comparing objects along
3
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a realistic seven feature dimensions in such &sydor example, with 50 distinguishable
steps along each dimension, the memory space vadrelaldy require at least 507
neurons. This is several times more neurons thest iexthe brain, which means that a
Cartesian feature space is neurally implausibleddte, models of similarity judgments
have not tackled this topic in a way that also adsles the representational stability issue
discussed above.

A final advantage of neural models is that thegwalfor an integration of other
cognitive functions related to similarity behavio@bject similarity is directly related to a
number of visual cognitive processes, all of whielre been investigated at the neural
level. Similarity relies on feature perception the colors, shapes, orientations, etc. being
compared Shepard, 1987; Faubel & Schoner, 2008; Mel, 1997); attention for binding those
features to objects (Treism& Gelade, 1980; Ashby, Prinzmetal, Ivry, & Maddox, 1996;
Samuelson, Smith, Perry, & Spencer] BHommel & Colzato, 2009) or for weighting
dimensions §hepard, 1964; Maunsell & Treue, 2006; Klaus, et al., 2007; Chajut, Schupak,

& Algom, 2009); semantiaelationships (Recker, Plumert, Hund, & Reimer, 2007); and
working memory for remembering two or more of obgdong enough to compare them
(Johnson, Spencer, & Schoner, 2008; Johnson, Spencer, & Schoner, 2009; Johnson,
Spencer, Luck, & Schoner, 2009). Object similaiftyurn contributes to various other
related downstream behaviors like object categorization (Ashby & Maddox, 2005; Nomura
& Reber, 2008) or visual search (Grossberg, Ming&I&oss, 1994). All of these related
processes are understood increasingly at a nenareg$s level, and integrating a neural
model of similarity judgments into this picture magip us understand the role that

similarity judgments play in broader cognitive peesing.
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Dynamic Neural Field (DNF) models are neural preaaesdels that hold the
potential to model a variety of object similaritglaviors. DNF models represent cognitive
processes primarily as interactions and activityveen and within “neural fields.” These
fields are arrays of neural units organized by icomus feature dimensions such as color,
orientation, or spatial position. Activation withiinese fields can enter different attractor
states that can be stably maintained over shari-tierlays. In this way, DNF models have
explicitly addressed the challenge of representatistability—how an activation pattern
can be stably maintained to enable comparisonsatitér perceived or attended
information.

In addition, a recent model has addressed howadeatsitions can be used to
selectively bind object features together in wogkinemory to support the comparison
operations necessary to, for instance, detect @saimgobject features when they occur
(Schneegans, Spencer, & Schoner, in press). Qlytitais model addresses the issue of
exponentially increasing resource usage implie€astesian feature spaces. Because all
features of an object representation are ‘boursdavcommon spatial dimension, this DNF
model requires only linearly increasing resourcese-additional set of fixed-size feature
fields—with each additional feature dimension. ®ats of this model have been shown to
capture nuances of object representation (Johigmencer, & Schoner, 2008) object
binding (Samuelson, Smith, Perry, & Spencer, 20dbyd learning (Samuelson, Spencer,
& Jenkins, 2013), and object recognition (Faub&@&dbner, 2008).

A final advantage of DNF models is that they hagerbused to simulate a broad
array of cognitive processes and to capture relabaviors, from executive control (Buss
& Spencer, 2008) to motor planning (Erlhagen & Sw(2002) to spatial cognition

(Spencer, Simmering, Schutte, & Schoner, 2007).tMwosctly relevant to similarity
5
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judgments, DNF models have captured change detdotibavior. Change detection is a
form of binary similarity judgment, where “differ€rand “same” correspond directly to
“detection” and “non-detection” or “go” and “no-gamaking this a basic starting point for
capturing a wider array of other tasks in the anty judgment literature. It is the change
detection version of the model (Schneegans, Spefc&choner, in pressee also
Johnson, Spencer, Luck, & Schoner, 2009 for agdlatodel) that will serve as the basis
of a similarity judgment model in this dissertati@NF’s applicability to a range of other
cognitive processes, holds the promise of clargyhow similarity processes are related to
visual cognition more generally.

A DNF model has not yet been developed to cappeeic similarity judgment
behaviors. The goal of this dissertation is to adag DNF model from Schneegans,
Spencer, and Schéner (in press) to explicitly jusigalarity and to capture as many
canonical behaviors as possible from the objecilaiity judgment literature, while
contributing the unique advantages of neural pmossdeling to the field.

The first step in achieving this goal is to ideytf set of canonical similarity
judgment behaviors most meaningful and informativeapture. Specifically, | am
interested in task-general behaviors that sparagityi contexts. Behaviors that span
different similarity tasks are the most likely beloas to stem from core processes of
similarity judgment itself. In the following sectipl survey the similarity judgment
literature to identify known or potential task-gesiebehavioral effects.

Literature Review of Object Similarity Judgments

| seek to understand and model the cognitive peasethat drive object similarity

judgments. The most straightforward way to infer tfature of these processes is to

examine the behaviors that they drive. Examinintepas of any similarity behaviors
6
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directly lends insight into similarity processes—shsystematic, widespread, high or low
level they are, etc. For this dissertation, howgelrehaviors are also specifically needed as
targets for initial fits of a task-general, neysebcess model of similarity judgments.

Task-general behaviors are good targets for mogl@liork for several reasons.
Task-general behaviors by definition are unlikelyoe dependent on or easily influenced
by task variables, thus these serve as robust imgdekgets. They are also efficient
targets, because one set of accurate processesdded allows it to capture that behavior
across many contexts. Capturing task-general befsaalso promises the largest number
of theoretical connections to existing literatigiece task-general behaviors are the most
commonly cited and most actively researched. Exadiytla comprehensive similarity
judgment model should also be capable of captuaskrspecific behaviors, but for
initially establishing and fitting a neural processdel, specific behaviors are not the most
efficient, central, or robust targets.

Prior literature suggests several behavioral pagtdrat may fit these criteria. |
divide my review of the literature into two broabgps of behavioral findings: those
based on comparison of the features of objectdtask based on factors other than
feature comparison. This distinction is intendety @s an organizing principle and starting
point for approaching the large literature on samil judgment behaviors.

Feature Comparison

Comparisons between object features are histoyitadl earliest known and the
most universally appreciated factor contributingbgect similarity judgments. All objects
have features, like texture, size, or brightnes® most straightforward way to compare
two objects is by comparing these features. Closdches between features and/or a

greater number of feature dimensions along whigaat® match means higher similarity
7
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between objects. Quantitative features can be gglgccompared: an object can be twice as
bright as something else, and a 30 degree rotabomone line to another can be said to

be twice as much of a difference as a 15 degre¢ioat More qualitative features like
texture can also be compared but may be restriotedarser distinctions such as simply
match / mismatch evaluations.

All models of object similarity include some vemsiof a feature comparison
process. Most models further describe some verdiarifeature space” where all or some
of these features are compared, especially meggitifes. One common example of a
feature space is a multidimensional Cartesian ¢oatel system, where each feature is an
orthogonal dimension, different values of a feanepoints on that dimension, and
objects are single points, clouds, or volumesspace defined often by multiple
dimensions. Other types of feature spaces arelpeshowever. Models that represent
objects in feature spaces usually quantify simifana a distance measure through that
space, whether city-block distance, Euclidean distaor other more complex measures.

Formal, quantitative models of object similaritgigments are more modern,
arising in the early to mid 20th century, initiabpsed around feature comparison in rigid,
mathematical feature spaces (Richardson, 1938; Torgerson, 1952; Shepard, 1957). The
most common type of quantitative feature space(aad may still be) a Cartesian
coordinate system as assumed, for example, ina@gsas and modeling method called
multidimensional scaling (Shepard, 1980). Multidmei®nal scaling (MDS) is an
algorithm that takes dissimilarity values betwedfetent possible pairs of objects in a set
as input and arranges points in a Cartesian spach,corresponding to an object, such

that distances most closely match either the saopmoptions of the raw dissimilarities
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(metric MDS) or the rank-order of the dissimilagiti(non-metric MDS).The input values
can be derived from any task. The number of dinerssused to arrange the points is
specified as an input parameter, with lower numpesisling simpler models and higher
numbers yielding better fits. All such dimensionswever, would still be considered to be
orthogonal and Cartesian in an MDS analysis, el/emput data may have originated from
a task without Cartesian constraints.

An MDS output solution has no fixed axis identitiéghree dimensional MDS
solution, for example, will place points in threeaénsional space, but the location,
rotation, and labeling of the three axes is abstRart of the process of interpreting an
MDS output is often judging how the output dimensionap onto the input dimensions.
For instance, this might include rotating the otitpia two-dimensional solution so that
the vertical and horizontal correspond to meanihgfal visually identifiable axes in the
solution. However, regardless of interpretationNadimensional MDS solution always
outputs points that fit geometrically into exadily Cartesian, orthogonal dimensions.

Because object placements in the MDS algorithneaatuated by the distance
between pairs in the feature space, the algoritbed to calculate distance is another
important input parameter. Originally, and still shaommonly, Euclidean distance was
and is assumed (Richardson, 1938, Hout, Goldigg€erguson, 2013). Early on,
however, the alternative of a city-block distancetme was demonstrated for some
comparisons (Attneave, 1950). Evidence now suggleat<ity-block distance is a more

appropriate measure when feature dimensions aegaddp (or “analyzable”) and not

! Metric MDS is used if all equal objective intersah the input data can be trusted to also be

psychologically equal in magnitude. Non-metric MBSised if intervals are not necessarily

psychologically consistent, and is the default chainless measures are carefully controlled.
9
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contingent upon one another, while Euclidean de#as more appropriate for integral
dimensions (Arabiel 991; Shepard 1987; Garner, 1974; Shepard, 1964). For example,

color dimensions like color saturation and coloe fawe generally integral and best
measured against one another with a Euclideancenethile dimensions like size and tilt
are analyzable / separable and best measured tgaeanother with a city-block metric.
Metrics somewhere in between are also possiblsdni-separable dimensions (Shepard,
1964). MDS algorithms traditionally use a Minkowsgkiwer formula to compute

distancé, which can technically vary continuously betwegroaver value of 1 (city block)
or 2 (Euclidean) or outside of that range.

Which of these parameter values best fits humaawehis a measurable result
that can be usefully tested across almost any,taskse MDS analysis only requires a set
of pairwise dissimilarity ratings from any sourdée following chapters, | will include
MDS as one consistent analysis across empiricied @sd as an analysis of my
computational model of similarity judgments. MD3w&s as a basis for many other
analyses of orderliness of similarity judgmentatree biases between feature dimensions,
etc. Number of output dimensions is also a parantlese can be fitted freely to data and to
a model and results compared for consistency. Timkdwski distance measure variable,
however, was theoretically constrained to 1 (cityek distance) in my analyses due to the
separability of the feature dimensions used in Rpeemental stimuli (described in

chapter 2).

2 The formula is the same as the Euclidean distéorosula, but the difference between objects
along each dimension is taken to the power of teatsof 2, and the sum is then taken to the power
of 1/x instead of 1/2. x is usually set to 1 oo dity block or Euclidean distance, but can be any
whole or fractional value.

10
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Scaling of distance measures is also a varialfleature comparison. The scaling
factor is a function that relates distance in femgpace to a final similarity judgment.
Scaling is relevant to any distance measure, Eemfidcity-block, or otherwise. Similarity
judgments are sometimes treated as scaling linealdy any other function, although
roughly exponential scaling is found to consistenthtch behavioral ratings across
experiments and stimuli (for review, see Shepa®8y7). In an exponential scale, larger and
larger distances in feature space have expongndiatinishing impact on similarity
judgments, asymptoting toward “completely dissimiijadgments. As exponential scaling
has already been established as task-general mnzbticlusion has been widely adopted
(Nosofsky, 1991; Pothos, Busemeyer & Trueblood, 2013; Kruschke, 1992), it is not
necessary to test experimentally in this dissemiatatnd MDS analysis will assume
exponential scaling.

The Cartesian/MDS approach is easy to work withianhdtive, but behavioral
similarity is known to not always conform to thessumptions. Tversky (1977)
demonstrated that similarity judgments can viothteCartesian assumption of symmetry,
for example. That is, people do not always ratestinélarity between A and B as equal to
the similarity between B and A. This is impossitvle classic Cartesian space where
Euclidean (or city-block) distance is necessargyad in both directions. Tversky also
suggested that other Cartesian assumptions alieetyiolated. Violation of the principle
of minimality is when two non-identical objects gueged more similar than two identical
objects, or when two identical objects are judggifférent” or to have any value not on
the “most similar” end of a similarity ratings seaViolation of the principle of triangle
equality is also possible. If dissimilarity is imagd as distance in a feature space, then

triangle equality holds that two legs of a trianigé&tween three objects cannot add up to
11
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more than the length of the third. Violation ofgtlprinciple occurs when tlessimilarity

of [objects A and B] plus the dissimilarity of [@uats B and C] adds up to more than the
dissimilarity of [objects A and C]. This is not ressarily a valid assumption for non-
Euclidean spaces, but for a Cartesian feature spamdinate system, violations of triangle
equality are damaging evidente.

Evaluating asymmetric similarity judgments is sttitially (and for a model,
computationally) demanding. Multiple duplicate Isianust be run for each pair of
presented objects, since pairs can only be compargmselves in opposite order. |
therefore postponed analysis of this behavioraogfior empirical analysis and for the first
iteration of my neural similarity judgment modedit, however, evaluate the principles of
minimality and triangle equality across multiplgpeximental tasks and modeling results.
These effects can more efficiently be evaluatedsscany number of repetitions of each
pair of objects.

More recently, the assumption of a Cartesian shasébeen found to be in conflict
with other behavioral findings. People’s abilityrexcognize differences along one
dimension improves as two compared objects aligngdther dimensions (Gentner,

1983; Markman & Gentner, 1993; Jameson, et al., 2005). For example, color differences
between dog breeds might be noticed more readily tolor differences between a
typewriter and a dog, even if the absolute diffeeeim color is the same in both cases. The
dogs share a number of features that the typewdites not, like their shape and texture,

making dogs more “alignable” with one another. Tdlignment then makes the remaining

3 Tversky did not cite data for these violationspiymg them to be commonplace. Shepard (1964)
had earlier explicitly demonstrated at least triangequality in similarity judgments. | was unable
to locate explicit published data for violationsneihimality, although my own experimental as
well as modeling data show these violations.
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color difference easier to perceive. This aligrnigbéffect violates Cartesian assumptions
that dimensions should be orthogonal: distancegadmfor should have a constant
contribution to overall similarity in a Cartesiagature space, regardless of what happens in
other dimensions, yet behavioral evidence for alility suggests that this is not the case.
Alignability is a straightforward behavioral restht | evaluated for task-generality in
empirical analysis.

Circular feature dimensions like color or orierdatialso violate Cartesian
assumptions. A circular feature dimension canrohfo an orthogonal Cartesian space.
The plainly evident fact that that people can pgecand work with circular dimensions
(like color hue or line orientation) with little ficulty serves as additional evidence against
this classic approach. More broadly, circular disiens significantly change the
mathematics of distance measures in any type aire@omparison. In a linear dimension,
moving one equally sized feature step is half is®adce as moving two equally sized
feature steps. Figure 1 shows how this is not rseciy true along a circular dimension: if
distance is calculated as arc lengths around ttedeuof a circle, then the dimension acts
like a linear one, but if distance is calculatealagrd lengths across the inside of the
circle, then two individually equal feature stepd e perceived as less than twice as
different as one step. Shepard (1962, see alscaghé&pFarrell, 1985) tested individual
pairs of colors and examined their similarity rat{&igure 1, middle) and demonstrated
that most people perceive differences along treilar dimension of color by chord
lengths.

Similarity with respect to circular dimensions isther complicated by the fact that
even if similarity is perceived as arc distanceés #till ambiguous which direction along a

circular dimension an object comparison should ictEmsin one sense, blue and magenta
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are one feature step apart in Figure 1 (rightarfather sense, they are five feature steps
apart. This ambiguity does not exist in Cartesjaaces, and Cartesian similarity equations
cannot function without modification to explicittgsolve this ambiguity. In general,
circular dimensions and these associated compitaitare often overlooked or avoided by
similarity models. Nevertheless, the constraingytimpose can serve as valuable clues
about underlying similarity processes, and a cohgamsive model of similarity processes

must account for them.
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Figure 1: Chord and Arc-Based Circular Distance.

Cartesian feature space suffers still another ttrea neural intractability. In a
classic Cartesian space, adding dimensions inge¢hsesize of the space exponentially per
dimension. As discussed above, Cartesian featpeees able to accommodate realistically
complex objects require more neurons than aredrntiman brain. Humans appear to
regularly succeed in making relatively high-dimemsil comparisons, howeveThis

makes a Cartesian solution not neurally realistic.

4 Examples of visual features include: color huégicsaturation, brightness, size, texture features

such as glossiness, line orientation, monoculathd@ggns focus, occlusion, etc.), binocular depth

(eye offset), shape features such as intersectiinestion and speed of motion, spatial frequency.
14
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Some accounts of similarity deal with these cotdligith Cartesian geometry by
abandoning either Cartesian feature space, ty@iadgksian object representations,
traditional Euclidean/city-block distance measutessome combination thereof. It is also
possible to remain in the realm of feature-comparisased processes but replace a
Cartesian feature space with a different spackeaprimary solution.

Pothos, Busemeyer, and Trueblood (2013) retair@areesian feature space, but
proposed a novel object representation and distaweasure. They proposed that objects
and concepts could be represented by whole lin@sep, surfaces, or volumes in feature
space. Then, instead of Euclidean distance, theianud overlap between those shapes as
“seen” (projected) from different perspectiveseatiure space can serve as a similarity
metric. The model is illustrated in Figure 2. Oltgecan be represented in Pothos and
colleagues’ model by ranges or volumes of poinfeature space, so a pair of objects is
represented in the figure by lines instead of @ofgteen and red). This range may perhaps
represent a variety of different viewpoints on tgects or different contexts (lighting,
state of inebriation) where they might be expemehand thus would each cover more
than one combination of possible feature valueseMénsimilarity judgment is called for,
the model chooses a perspective in feature spgeadens on the left or right of Figure 2).
Choice of perspective could change based on fastmis as the wording of the question or
which object is more attention-grabbing and isratéal first. Similarity is then the
perceived overlap of the two objects from the rateé\perspective. More formally, the
distance measure can be described as the sizgpatial projection from one object space
to another.

This model can account for asymmetric similaritggments of the type Tversky

(1977) reported. As indicated in figure 2, changimg order of a question about two
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objects can lead to asymmetric perceptions of anityl because the size of the projection
between objects changes from different perspectWietations of triangle equality can
similarly be explained in Pothos and colleaguesietdy the details of which order each
comparison between objects is presented, or inidadwsimilarity judgments, which
objects a person attends first or finds most salMnlations of minimality are attributed

only to noise.

Red apg Green,

Y
Y

Figure 2: A quantum geometric model of similarity. An overlap-based similarity metric can account
for asymmetry in similarity judgments. Green and red vectors represent objects that occupy a
range of feature value combinations. Left: The “similarity between red and green” causes the

listener to take one perspective (eye icon) and observe a large overlap. Right: The “similarity
between green and red” causes the listener to take a different perspective and observe a smaller
overlap between the same two lines.

Alternatively, limitations of feature space candnlressed if feature dimensions
are represented independently from one anothéer#tan together in an integrated
Cartesian space. Treisman and Gelade (1980) (sediaisman, 1986) suggest a model
like this as an early phase of object processirtgoAding to their feature integration
theory, different areas of the brain initially ineadently process sensory input

corresponding to an object’s basic feature vall@sgavarious feature dimensions. For

most features, the information is organized invidiial spatial maps at this point in
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processing. Shortly afterward, featural informatilat all comes from the same location in
space is bound together and stored as an intedi@igztt file,” allowing for both easier
tracking with movement and easier comparison terothjects held in memory.

Treisman and Gelade’s (1980) theory is describeéddrcontext of behavioral
effects other than basic similarity judgments, uidiohg illusory conjunctions and visual
“pop-out” searches, but the architecture of the ehgtlll accommodates non-Cartesian
similarity effects. The model relies on an alteeni@ature space, or rather several of them,
one per feature dimension. ‘Local’ similarity cam defined in each individual feature
spacepr similarity could be considered between alreadygrated object files. The
independent processing of feature dimensions alloeisman and Gelade’s (1980) model
to address non-Cartesian similarity. Independeaatufe dimensions can warp, skew,
strengthen, weaken, etc. without affecting othatuee dimensions, and in ways that a
single integrated Cartesian feature space canisain& concrete example, contributions to
a similarity judgment from individual feature spader circular features like color hue or
line orientation could be calculated circularlytiwaut introducing the problems of an
integrated Cartesian space.

Dynamic neural field (DNF) theory is based on aisinarchitecture as Treisman
and Gelade’s feature integration theory. Each feadimension is represented
independently with its own population of neuraltanwith values along the dimensions
coupled together via a shared spatial dimensi@ndate an ‘integrated’ object
representation. For instance, DNF models may irchuttolor by space” map, a “size by
space” map, an “orientation by space” map, etd.nbuer a “color by size by
orientation...” map as in Cartesian models. ThudfFDnodels avoid the exponentially

increasing neural cost of a Cartesian feature spadeeplace it with a linearly increasing
17

www.manaraa.com



need for resources per feature dimension. Likesiman and Gelade’s model, dimensions
in the DNF model are somewhat independent anddtiyield non-Cartesian similarity
behaviors once integrated along the shared stnension. It is possible that DNF
models could use this dimensional flexibility teesfically explain asymmetry,
alignability effects, and circular dimensions, alilgh this has not yet been tested.
Non-Feature Comparison Influences on Similarity Jugments

Similarity is not entirely determined by featuremguarisons. Non-feature-based
factors like attentional bias or prior knowledge ¢eth directly affect similarity
judgments and can indirectly alter judgments by atatihg feature comparisons. Non-
feature-based effects are more likely to be tagcifip than are feature-based effects.
While feature comparison is a universal aspectrofi@rity models and theories, non-
feature effects can potentially be isolated ang oblserved within one context. If so, these
task-specific effects may still ultimately be imgaot for fully understanding similarity
judgments, but they are not the most efficientatgdor initial model building efforts.

An example of a well-known similarity judgment belw is the “fast-same” effect:
in tasks where there is a binary “same” versudéiht” response, participants tend to
answer “same” trials more quickly (fedl, 1985; Nickerson 1972). This effect is tied to
response format more so than feature comparisahit &task-specific by definition. The
fast-same effect cannot transfer very meaningtollyome other similarity tasks like
grouping tasks without explicit “same” and “diffat& answers or high precision reaction
time measures. The fast-same effect is only soraemleaningful in tasks with continuous

metric measures like rating scales, and it is yyaitally studied with these tasks.
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Dimensional Attentional Effects.Other non-featural effects on similarity
judgments, however, may be task-general. One ofesgch effects result from participants
paying more attention to one feature dimensionner stimulus object than another. Figure
3 shows one way of conceptualizing attentional nhetttchin of similarity: when attending to
a given feature dimension, feature space can hgtido expand along that dimension.
When ignoring a dimension, feature space can ccirditang it(Shepard, 1964; Klaus, et
al., 2007 Maunsell & Treue, 2006). Attention is often external to object featurése to
factors like task instructions or a participant'stimation for reward. Attention can also
result from object features themselves: the sadi@igarts of a scene (Itti & Koch, 2000,
2001; Theeuwes, Kramer, Hahn, & Irwin, 1998) depends on the objects in it and can alter
attentional allocation among those objects. Howeezn though salience can originate
from object features, it is not a deterministidawful of a result of feature dimensions like
direct comparisons of features, and features otharsthose of the objects being

compared matter.
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Figure 3: The effects of attentional modulation on similarity judgment. An initial feature space
(left) can be attended or ignored more along one dimension than another, effectively compressing
or expanding the space (middle) and changing relative object distances/similarities (green vs. red).

In an extreme case (right), full dimensional compression can yield clusters that seem “identical”
for purposes of a task.

Notably, Tversky (1977) proposed attentional motiotteas a solution to the
behavioral effects that violate Cartesian assumpt{@asymmetry, non-minimality, triangle
inequality). The basis of his similarity system vi@ature-matching: features are listed for
two compared objects, and each feature either rmstchmismatches (see more recently
Navarro & Lee, 2004). This would on its own be esisdly a many-binary-features space
using a city-block distance measure. Tversky wanthowever, to point out that people
might attend more to one object in a pair that @arfprominent,” whether because it is a
more historically important, often encountered speally preferred, or first mentioned
object. Similarity judgments might be weighted mbeavily toward the features of this
prominent object, whereas features only held byehe prominent object would be de-
emphasized in the overall similarity judgment. kea¢ shared by both objects would be

treated the same in either direction. This diffeeeaxplained the asymmetric similarity
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relationships Tversky had observed, and thus thieatrmodulating influence was not
itself necessarily based on feature values. Ratelifference in prominence of objects
explained the asymmetric relationship, which magumm be rooted in non-featural causes.

Others have taken a similar approach. Johanne2800) echoed Tversky’s feature
matching and prominence-based model, achieving whiatebetter behavioral fits with a
slightly modified version. Nosofsky (1991) also adated attentional bias to
stimuli/objects relative to one another as a sotutd problems of asymmetric similarity
judgments. Shepard (1964) discussed an alternatitveelated notion of attending to
specific feature dimensions, instead of to objaatgevenly. By shifting dimensional
attention rapidly within a task, he proposed, pgstints could essentially stretch or
compact their effective feature spaces and thuw €artesian violations like triangle
inequality throughout the course of an experimbat takes many measurements of
similarity. The possibility of biasing a featurend#nsion rather than an object is a powerful
concept for models like Treisman and Gelade’s (1 88&ure integration model of
similarity judgments, or dynamic neural field maglddoth of which are able to easily
modulate feature dimensions independently.

Attention can also account for alignability effects (Goldstone, 1994a; Gentner,
1983; Markman & Gentner, 1993). In this case, when two objects are mostly alignable,
attention is drawn away from all of the featurasd(@ossibly associated dimensions) that
trivially match and toward those few that diffexaggerating the perceived magnitude of
differences. Twin children that differ only in haolor draw attention toward their hair
color and encourage observers to perceive thenoeas different than they perhaps

actually are. Alignability is a potentially stroegndidate for a modeling target. It is
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guantitatively straightfoward and has been repidand shown to be robust but not tested
across an extensive number of tasks.

Neighborhood Density EffectsA consistent factor shown to influence similarity
judgments in non-featural ways without relianceattentional states is neighborhood
density: the number of other known objects nedeature space to the objects being
comparedA person might know about hundreds of insectsltw only slightly different
(high neighborhood density), yet not know aboutthimg that looks similar to a giraffe
(low neighborhood density). Some researchers heymped that a feature space might be
warped dynamically by neighborhood density, tendmntgxpand” in regions more densely
populated by neighboring exemplars, leading to wiehnal ratings of exaggerated
dissimilarity (Krumhansl, 1978; Love, Medin, & Gureckis, 2003). An expanded portain
feature space alters relative similarity judgmdrgisveen objects within that portion of the
space. The left half of Figure 4 shows an un-mdddleature space populated by a set of
several known objects. Objects on the left of {hece have higher neighborhood densities
than objects on the right. The same feature spacpes by neighborhood density
expansion might look like the right hand side & fiyure: denser neighborhood objects
have expanded away from one another, but less dengleborhood objects were less
affected. This can change relative feature distaimodarity judgments. Neighborhood
density represents another straightforward, anblgzehoice for empirical testing and as a

modeling in the event that it is found to be a igskeral behavioral pattern.
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Figure 4. The effects of neighborhood density @iuee space. An initial feature space (left) with

non-uniform neighborhood density may expand noedlity in the denser regions (right), such as

when a person is reminded of neighborhood dengfgrently by the order of items in a similarity
guestion: “How similar are A and B?” (left) vs. “Mosimilar are B and A?” (right).

Additional Non-Featural Behavioral Effects. A number of additional non-featural
behaviors have been demonstrated. For examplaligesationships such as arrangements
of objects in continuous lines or synchronous mosais of objects can emphasize or de-
emphasize common features of those objects in aheyaffects similarity judgments
(Kubovy & van den Berg, 2008). Common category mersihip can also exaggerate
perceived similarity of object pairs. Objects the¢ similar tend to be members of the
same category, however membership in the catetgelf can exaggerate their perceived
similarity evenbeyond the original resemblance. In other words, two kinobjects will be
judged as even more similar after being placedshaaed category than before, and
members of exclusive categories are judged as diffeeent than they otherwise would be
(Hund & Plumert, 2003; Hund, Plumert, & Benney, 2002; Recker & Plumert, 2008; Noles
& Gelman, 2012). Both gestalt and categorizatiomalveoral effects are task-specific to
situations with gestalt object relationships oegatization requirements. Neural similarity
judgment processes may be important for fully usi@derding gestalt perception or

categories and vice versa, and these effects aneeftargets for investigation with the
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DNF model. Since gestalt and categorization bemavlo not necessarily derive from
core, task-general similarity judgment processes)gh, | do not include them initial
empirical tests or as initial modeling targets.
Summary of Targets for Modeling

A sizeable set of appropriate behavioral patteongurther empirical and modeling
analysis has been identified from the above rewaéthe similarity judgment literature:
comparison by feature values, attentional modutadiofeature dimensions, perception of
circular feature dimensions, violations of mininagliriangle inequalities, neighborhood
density effects, and alignability effects. All bielse behaviors will be analyzed across
multiple similarity tasks to test for likely taslkegerality. Any behaviors which are found to
be task-general across the three representativiasiynjudgment tasks in this project will
be used as targets for neural model fitting anduat@n.

After identifying task-general similarity judgme¢haviors experimentally, the
DNF model will be fitted to these behaviors andandoing, will shed light on possible
neural level processes underlying similarity bebessin general. To better establish the
degree to which the neural process perspectiveiggia to the similarity judgment
literature, | first survey the set of existing faincomputational models of similarity
judgments.

Survey of Computational Models of Object Similarity Judgment

The modeling goal for this project is two-fold:dapture a variety of task-general
similarity behaviors computationally, and to doas@ neural process level. These two
goals can be conceived as two relevant dimensibm®del characteristics, defining a
“model space.” Figure 5 depicts this model spaegplgically. Models of similarity

judgment can be plotted by their level of implenagioinal abstraction along one axis and
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the degree to which they capture task-general aiityilbehavior versus task-specific

behavior on the other axis.
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Figure 5: The modeling space of the object similarity judgment literature. Only a representative
subset of models are shown here. The dotted circle represents the goal of this dissertation: a task-
general neural process model of similarity judgments.

Figure 5 plots only a select few representative elydut many models of
similarity exist throughout various regions of thi®deling space. Some models are both
abstract and address specific behaviors (uppet) rigtarge number of non-neural
computational models of similarity judgments halsmdeen developed to account for
different combinations of the many commonly obsdrsenilarity judgment behaviors
(upper left). At the same time, neurally-implemehteodels that involve similarity exist,
but they are primarily designed to capture othérabers such as categorization.
Therefore, these neural models have not souglagtue a wide variety of similarity

behavioral effects at once nor to explain task-ggremilarity processes (mid-figure to

lower right).
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The combination of characteristics in the lowet téfthe figure, however-beth
comprehensive capture and neural implementation-béas lacking in models in the
object similarity literature. The need for such adal is high: some models of this type are
necessary for the most complete and neurally @déisinderstanding of human similarity
judgments and to fully integrate this understandiuith related cognitive processes. In
seeking to fill this gap, one could consider theralatives of beginning with models in
each of the various populated portions of the FEgumodeling space. | discuss these
possibilities in the sections that follow.

Task-Specific, Non-Neural Models

Many approaches to similarity actually exist in thgper right quadrant of Figure 5,
considering a single task or related tasks wheygeaific behavior of interest is strongest
and/or most convenient to study. For example, Ru&deullock (1985) addressed facial
similarity judgments over developmental time, wakks altered only minimally for age-
appropriateness in order to facilitate comparisochddren’s and adult’s competency.
Palmeri (1997) proposed a model specifically foduse explaining the effect of object
similarity on learning automaticity of categorizatiskills over child development. These
are important and effective means of advancingagpudlying knowledge, both before and
after consideration of more general similarity sses. These models are furthest from the
goal of this particular project, however, to capttask-general neural processes of
similarity judgments.

Task-General, Non-Neural Models

Other researchers have applied theories and mofigisiilarity across a broad

range of tasks, with an intention of integrationoas contexts, but without an explicit

neural grounding. Kubovy & van Den Berg (2008) eswed more than a dozen
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experiments, and performed three of their owngtoverge on an understanding of how
perceptually grouped stimuli (such as common move)radfect perceptions of object
similarity. Smith and Nelson (1984) performed adxgtof diverse similarity judgment
tasks to examine differences in children’s and tatipkerception of holistic versus
dimensional similarity.

Gentner and colleagues (Gentner, 1983; Sagi, Gentner, & Lovett, 2012) have
applied their Structure-Mapping Engine model of@ptual comparison to a wide array of
tasks and behaviors related to similarity, fromidasnilarity itself to high level analogical
reasoning. The structural mapping engine, howesdaygely a propositional model
couched at an algorithmic level, and it abstraetsral level constraints in a way that does
not allow for investigation of the influence of maliprocesses. Similarly, Tversky’s (1977)
and Johannesson’s (2000) feature matching andtgij@minence models capture several
similarity phenomena but exist at the level of edidtlogical set theory.

Some models of similarity explicitly avoid questsoof neural process by design.
Tenenbaum and Griffiths (2001) implemented a Bayesiodel of similarity, which relies
on logical, inductive inference according to the/&arule as a basis for generalizing
known categories to novel objects. The model cagtarany similarity judgments, but
Bayesian processes in general have not been clestdplished as neurally plausible
(Baddeley, et al., 199Brighton & Gigerenzer, 2008 Feldman, 2010), and Tenenbaum’s
and Griffiths’ model in particular makes no atterapspeaking to neural implementation.

Hahn, Chater, and Richardson (2002) proposed aiamigpdel that calculates
similarity without strictly quantified feature défences or traditional distances at all. The
model is still based on the features of objectstaowl they compare, but rather than a

distance or matching algorithm, the model lookthatnumber of physical transformations
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required to convert one object into another, frothiad person perspective. This approach
can consider many types of similarity, but is netirally specified.

Pothos, Busemeyer, & Trueblood (2013) presenteglaritum geometric” model
of similarity able to quantitatively capture batature comparison effects as well as
several classic exceptions to metric similaritgluding the “asymmetry” order of
presentation effect described above from TversRy 7). Pothos and colleagues’ model is
impressive for capturing asymmetry without relymmgany modulating factors or
parameters outside of their inherent similaritygoeent mechanism, but the model is
almost entirely mathematically abstract. It emplogs only a Cartesian feature space but
also a vector projection method for measuring sintil distance in feature space that has
no clear neural analogue.

Several models are not neurally plausible, bectheseimplement continuous,
orthogonal, Cartesian similarity spaces with expoiaéresource needs. Pothos, et al.’s
2013 model falls into this category, as do Shegat®87), and Krumhansl’s (1978). The
latter two models introduce modulations and factorsapture more behaviors than early
models, but without addressing the problem of nui@plausible resource requirements.
Nosofsky’s (1986) generalized context model (GC#/am abstract statistical
categorization and similarity model focused prityaon comparisons between whole
groups of object exemplars. Nosofsky's model isatdg of capturing a number of diverse
similarity judgment behaviors, but is still depentlepon an expansive multidimensional
feature space.

Task-Specific, Neural Models
Several models address the neural implementatroeriion of the modeling space

outlined in Figure 5, but do not also achieve carhpnsive capture of similarity
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behaviors. In particular, a number of proposed ectianist models of object
categorization have some degree of neural implesient These models involve
similarity processes to various degrees, but nasebleen focused squarely on similarity
and an intent to capture a comprehensive list gbnsamilarity judgment behaviors. For
instance, ALCOVE (Kruschke, 1992) is a three lay@inectionist model. The input layer
features individual nodes for each considered fealimension, with activity strength
corresponding to feature value. These connectidden layer by dense, pre-determined
connections representing a city block similaritherthat scales exponentially. The hidden
layer is connected to response category nodesedthed weights between the hidden and
response layers. ALCOVE explicitly represents saniy in its first set of connections, but
the similarity system is rigidly defined accorditega basic, feature-comparison
framework. Nuanced behavioral similarity effectelneighborhood density or violations
of minimality are not addressed, since the sintifatiles instead serve as one of several
components used to capture more downstream catatjon behaviors. ALCOVE'’s
hidden layer, if scaled to naturalistic stimuli atichension numbers, may become
implausibly large, similar to a Cartesian featysace. This is not as guaranteed as in an
explicitly Cartesian model, because heuristics migghemployed to keep numbers
realistic. Additionally, tying feature value to aity level on a node makes the
representation of circular dimensions difficulpa activity cannot “wrap around” from
high firing levels to zero in a continuous way.

COVIS (Ashby, Paul, & Maddox, 2011) is an examdla aeurally implemented
model with partial inclusion of similarity processthat could potentially be adapted to a
deeper, comprehensive neural model of similarithgjuents. COVIS was designed as a

model of object categorization. It is a two partdeb—one half is not neurally detailed and
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performs rule-based, propositional logic basediwitithg categories by lines or planes in
feature space. The second half is a neurally Spdatbnnectionist network that more
slowly (but powerfully) learns associations betwsensory cortical representations of
objects and nodes representing category decisimpanents in the striatum. The model
chooses whichever system is more appropriate foren point in category learning. When
the propositional system is used, the model’s neéomalementation is to this point unclear.

On the whole, COVIS is designed to do a sophigtct@ib of capturing category
learning, and similarity exists in the model a®mponent toward this end. In the
propositional system, objects on the same sidecategorical dividing line are inherently
more similar, but this is conflated with categorgmibership. In the associative system,
similar things end up in categories together dughtiring features, but there is no account
of similarity behaviors in the form of explicit jgchents or a clear way to read them off of
the system.

Love, Medin, and Gureckis’ (2004) SUSTAIN model @dldstone’s (1994a)
SIAM models are connectionist models for learniategories and relationships. SIAM
focuses on categorization over shorter timescateév{dual scenes and small groups of
objects), whereas SUSTAIN focuses on longer-ternteptual learning (learning whole
taxonomic categories). Both models capture the einihat similarity can depend both on
alignability of objects as well as on basic featuna&tching and comparison. Both models
also form category structures “on the fly,” recngtcomputational resources only as
needed, which importantly reduces the danger ofah@uplausibility that exists in more
rigid Cartesian feature space models. Both modstsadlow for attentional modulation of
dimensions, and the authors of SUSTAIN in particabeplicitly address this possibility

(referring to it as “contortion”).
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These models are some of the most promising aVaitabdels as starting points
for this dissertation’s goal of a neural model tte capture fits of task-general object
similarity behaviors. Each captures a set of sintyldoehaviors, and each as means to
potentially avoid the implausible resource demasfdSartesian feature spaces. Ultimately,
however neither SUSTAIN nor SIAM extends deeplyineural processing details such as
real time memory stability, details of visual olfjpcocessing.

Harris and Rehder’s (2011) KRES model is a conoeidi categorization model
similar in core architecture to ALCOVE. KRES impesvon ALCOVE by allowing for a
large number of nodes per feature dimension, emglilto more easily accommodate
circular dimensions in a plausible way. KRES afeatss individual dimensions more like
multiple single dimensional spaces. This approdatusibly avoids high dimensional space
exponential resource requirements in a way sinol@NF models—by adding resources
linearly per dimension rather than exponentialiyrthermore, KRES takes into account
prior knowledge as a means of distorting new catelgarning, which could potentially
allow it to capture key similarity effects like gliborhood density, which rely on
integration of objects recently seen into curremilarity judgments. KRES is also more
neurally detailed than many of the other modelswudised so far in this section, and may be
as capable as DNF models in the potential for capgueal time neural dynamic
processes, although KRES is not as well inherexathnected to other neural level
cognitive processes captured by DNF models.

Dynamic neural field (DNF) models provide a goaattshg point to pursue the
goal of a fully neurally implemented model of olijeenilarity judgments. DNF models
employ plausible neural representations and néutexlactions at all levels, and go beyond

connectionist architectures to mirror gross orgatiin of the brain in dorsal and ventral
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processing streams and in spatially-based integraitross feature dimensions (Spencer,
Thomas, & McClelland, 2009). DNF models are ableapture real time processes, which,
with the exception of KRES, is not a level of detdher existing similarity models are
built to explore. DNF models have not achievedajthe breadth of similarity behavior
capture as SUSTAIN, but it has explicitly captuobdnge detection behavior and thus
demonstrated feasibility for this project (Schneeg&pencer, & Schoner, in press). DNF
makes up for few prior accounts of similarity beleawith characteristics including neural
processing details and the potential ability tegnate similarity processes with other
cognitive processes such a perception, attentrmhyerking memory.
Overview of the Dissertation

| have identified a set of canonical, possibly tgekeral, behaviors from the
similarity judgment literature, and outlined reasevhy a DNF model is a good candidate
to capture these effects at a neural process IBe&bre the model can be adapted to fit
these specific tasks, however, the target behamaost be tested for their task-generality.

In the following chapter, | outline a set of thidigerse similarity tasks, a common
set of stimuli to be used across them, a commograrpntal manipulation primarily
aimed toward probing neighborhood density, andrancon set of analyses for each task.
In the three subsequent chapters, | provide ddtaiethodologies and results for each of
these three tasks in turn. In the final chaptesillreturn to the model to adapt, fit, and test
it against that subset of behaviors shown to bdegaseral from the empirical results. |

will then discuss theoretical implications in tleal chapter.
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CHAPTER 2

COMMON METHODOLOGIES

In order to most efficiently and reliably adapt ditéa neural model of object similarity
judgments, it is important to know which similarjtydgment behaviors are common
across a variety of tasks. To this end, | ran tdiferent behavioral similarity judgment
tasks: a pairwise ratings task, a speeded paituisey same/different task, and a
multiple-item spatial arrangement task, on the saet®f artificial stimuli. | have analyzed
behavior for a set of candidate effects that mgdatisibly be task general, including MDS
analysis for degree of feature-comparison-basegiahts, tests for awareness of circular
feature dimensions, tests for violations of miniityand triangle equality, analysis of
alignability influences, and experimental manipaatand analysis of neighborhood
density effects. Effects of any kind that are camnrto all three tasks are taken as
symptoms of task-general processes of object gityildo some extent, the nature of these
processes can be interpreted from behavioral sealdhe, and this will be discussed in
each of the following three experiment chapterdhaé®ers that persist across tasks also
serve as robust targets for computational modeéind,a comprehensive neural model of
object similarity judgments is the primary aim bistdissertation.

In this chapter, | describe the basic structureaah empirical task and how the
three tasks work together to cover a range of miffesimilarity judgment contexts. | then
introduce the common set of stimuli used acrodsstand the common set of analyses

applied across tasks.
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Three Similarity Tasks

The purpose of conducting three separate tasksondsentify breadth and
universality of similarity judgment behaviors acsdasks. This required the tasks to be
significantly different from one another. For insta, where one task introduces a timing
constraint, another should be untimed, and wheegtask allows extensive deliberation,
another task should make slow and/or conscioutegies difficult. As much variation in
task characteristics should be employed as possitile still allowing tasks to be easily
compared to one another, analyzed in the same &agselevant to real world similarity
judgments and existing literature.

In Table 1, | outline key characteristics along evhiny tasks differed. The pairwise
ratings task is the most commonly used task irsitmdarity literature. In this task,
participants rated each possible pair of objectsset by their similarity, one at a time, on
a scale from 1-9. The simplicity and open-endedoéfise task make it widely applicable,
easy to implement, and therefore ubiquitous. Pagwatings are also almost guaranteed to
show several known behavioral similarity judgmeffeés, since the task has been used in
canonical studies in the field. This includes kesttbehaviors in this project (Tversky,

1977 Shepard, 1987 Shepard 1964 Krumhansl, 1978).
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Table 1: Characteristics of the three behavioral tasks. By varying along a number of
dimensions, the tasks provide strong tests of generalization. Effects of similarity that persist
across all three, despite their many differences, are effects that are probably driven by
general, underlying processes of similarity.

Task Characterist

Spatial
Pairwise Pairwise Arrangement
Ratings Same/Different Method
Participant's ability to intentionall
strategize Moderate Very Low High
Time penalt No Yes No
Number of objects visle at a tim 2 2 16
Are there correct answe No Yes No
Must fit 2-D
Constraints on geometry of responses None None workspace
Do participants choose judgment orc  No No Yes
9 ratings 2 options, up to 707
Precision of responses per judgment  steps same/different pixels

As shown in Table 1, the pairwise ratings task matsextreme in any task
characteristic relative to the other two comparitsmks chosen for this investigation. It
served here as a baseline task, matching onetafieor falling moderately in between the
other tasks along the relevant characteristicaatiel to the pairwise ratings task, the
speeded pairwise same/different task was fastexdp@oarser grained, and more
spontaneous. The spatial arrangement task, byasintvas slower paced, finer grained,
more deliberate and strategic with a greater aveseof context. More detailed
descriptions and discussions of all three taskstlagid unique characteristics are provided
in the following sections.

Pairwise Ratings Task

Pairwise comparison using a ratings scale is byhiamost commonly used
similarity task, to the point of serving as an ghtory benchmark against which to validate
other measures of similarity (Perry, Cook, & Samar| 2015Hout, et al., 2013;

35

www.manaraa.com



Goldsbne, 1994b; Lee and Navarro 2002). Isolated pairs of objects are shown to

participants, who rate them based on their sintylarsing a provided numeric scale, in my
case a 1-9 scale labeled “least similar” to “masilar.” In my task, participants clicked a
scale on a computer monitor. All possible pairghdividual stimuli in a given test set were
presented at least once to accumulate an oveclirpiof perceived similarity
relationships.

The pairwise ratings task is capable of captuaingde variety of similarity effects,
and it is not known for producing characteristask-specific effects. The task is also
unconstrained in terms of possible responses—paatits are free to show any pattern of
ratings across pairs, from rating every pair idsaily, to complete randomness, to showing
asymmetry effects and other violations of Carte$eature spaces, to showing perfect
Cartesian organization, to anything in betweentiélpants are usually not (and were not
in my version) given any feedback or informatiomatwhat patterns they will be shown
or suggestions about what patterns they shouldejsdyilarity by, other than a description
of the ratings scale. The generic nature of thie ti@ekes for an excellent starting point in
searching for task-general similarity effects byfioning that the effects can be seen with
the chosen stimuli and by confirming that the ase$yused can successfully detect them
under basic conditions.

Although the task is relatively unconstrained,aed impos&ome minor
constraints that could influence participants’ bebtia These can be effectively controlled,
however. For example, only one pair of objectgésved and judged at a time, and thus
participants are not able to decide in what ordey tsample the stimuli, yet they may have
been influenced by the order in which the pairsenesented. This constraint can be

reduced by random object order between participamisby repeated testing of each object
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pair—any extreme ratings due to the random orderaot is then softened by averaging
them with duplicate trials that appear in a différposition in the order. Due to being a
pairwise task, another constraint is that the lasks an immediate reference to the full
stimulus set of other objects being tested. Thisamanstrain the information available to
participants in the first few trials of an experimesince participants may not have had an
appropriate reference frame or sense of scaley#hé stimuli in the experiment on which
to base similarity judgments. In my particular argte of the pairwise ratings task, |
address this problem by exposing participantsaiiytio a sample of all of the items in the
stimulus set. | included an exposure to each ite@ainitial phase in all three tasks used
in this dissertation.

Overall, the pairwise ratings task provided a reutisk environment along all
parameters included in Table 1. Participants haghsonably precise ratings scale to
express relative similarity, while the other tweks used rougher or finer-grained
responses. The pacing of the task was moderate nwitime limits but also short, simple
trials that moved quickly. The task also invitedtgants to spend some effort
deliberating, due to the untimed trials and marnings steps available, but calculated
patterns of judgments were limited by seeing omy items at a time. The task was largely
unconstrained, with no requirements placed on@pénts’ responses such as rules for
correct answers or any instructions or feedbackititsdationships between different pairs’
ratings.

Speeded Pairwise Same/Different Task

Binary same/different tasks are common in the literature (Belke & Meyer, 2002;

Bindra, et al, 1968; Farrell, 1985; Johnson, Spencer, Luck, & Schoner, 2009) and

superficially similar to the ratings scale taskaésed above, but instead of a continuous
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scale of different ratings, participants responthwnly two options, “same” or “different.”
In my version of the same/different task, partioggaresponded using computer keys.
There was a correct answer to every trial in thikt“Same” pairs of objects were those
that were the same in any way, and “different” paiad to be different in every way. The
task included feedback to reinforce these rulex aftery trial.

To compensate for lower statistical power of a hjimasponse as opposed to a 9-
level rating, more trials of the same/differenktagere necessary compared to the pairwise
ratings task. Participants in this experiment satwien five and six trials of each pair
(depending on counterbalancing details coveredhapter 4). Instead of analyzing
participants’ direct ratings as in the ratings faskhe same/different task, a participant’s
“rating” of how similar two objects are was takenbe the percentage of the duplicate
trials for each pair that the participant answexedsame” (regardless of the correct
answer). For instance, a pair with four “sames”afgix repetitions was one the
participant perceives as more similar than a péh two “sames” out of six repetitions.

A consequence of defining a participant’s ratingpbas multiple repeated trials
(spread randomly through the experiment) was thahs almost impossible in this task for
participants to intentionally influence their pattef results beyond a single trial. Trying to
remembering answers to matching trials that ocduarbundred trials ago while also
remembering the intervening hundred answers i¢aasible. Therefore, any patterns of
results from the pairwise same/different task caimkerpreted as unintentional,
cognitively low-level effects. This differs frometpairwise ratings task, where ratings
were transparent and participants could more neagiply an experiment-wide pattern to

their answers for the entire stimulus set.
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Another consequence of needing to run more triglseosame/different task for
statistical power was that trials needed to beefastfit into the same experiment duration.
For this reason, as well as to add additional diyebetween tasks, I included a time
pressure component to this task. The same/difféasktwas naturally somewhat faster
than its ratings equivalent, due to the keyboapdiiand fewer options, but to ensure quick
responses, participants heard an annoying buzeunggsif they took too long on a trial
(longer than 1500ms). A speeded component furtiséinduished this task from the less-
pressured ratings task, and reduced participahilgyeto consider patterns of responses
across trials.

Correct and incorrect answers were an importanatian from the pairwise ratings
task. The existence of a correct answer is necegsaame/different tasks, due to there
existing two prominent interpretations of binargngarity. “Conjunctive” similarity is
when objects must match in every way to be calgzohie” and all other objects are
“different.” “Disjunctive” similarity, which I chos for this task, is when pairs are the
“same” if they match alongny one dimension and “different” only if they differ ievery
respect. Without instructions to rate accordingre rule or another, participants might
randomly decide, and rather than a continuousildiigion of individual differences like in
a ratings task, results might show a bimodal diistron across participants and/or trials.
Not only would it be difficult to know which rule @articipants was using at any given
time, but conjunctive and disjunctive results carsimply be inverted and collapsed
together. They require different analyses and ptetiiferent known similarity judgment
behaviors (Farrell, 1985). Thus, not defining arecr answer would complicate analysis
and further reduce statistical power, since eaochgwould need to be analyzed

separately. Correct answers also simply serve ahansource of variety between tasks. |
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chose a disjunctive rule over a conjunctive oneahse disjunctive similarity provides a
more even mixture of “same” and “different” painsa medium or large stimulus set with
few feature dimensions, like the one used in tlesgmt experiments.

Overall, the speeded pairwise task served as erfpated, cognitively lower-level
version of the basic pairwise ratings task. Timespure was higher, precision and need to
dwell on each pair was lower, and the instructispecified correct answers. The fact that
each rating was distributed over many trials al®itéd the influence of any intentional
patterns of responses other than attempting t@smmrect answers and constrained the
task in a way the ratings task was not. Thus, filata this task can be used to identify
effects that might be specific to slower, deliberdtetter specified tasks.

Spatial Arrangement Method (SpAM)

My third task was a spatial arrangement method &/participants visually
indicated their similarity judgments using distamtepace as a metaphor similarity.
Several objects were presented at once, and panits placed them into a two
dimensional workspace such that shorter distanetggen any two pairs corresponded to
greater similarity. Figure 6 shows a SpAM trialxt8en items appeared at once on the
sides of a computer monitor in two rows of eightguiare workspace in the center served
as a spatial metaphor for a two-dimensional feagpeee. Participants dragged each item
into the workspace in any order until they werés§iad that the distance between each
pair of objects represented the relative similasityhose objects, with closer pairs being

more similar.
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Figure 6: A SpAM trial. Sixteen items are initially arrayed along the sides of the central workspace
in random order in two item banks. The participant here has moved four items into the
workspace, using space as a metaphor for similarity. Note that arrangements must be two
dimensional, and even though only four items have been moved, six pairwise relationships have
been defined so far.

Goldstone (1994b) developed SpAM for efficient eotlon of similarity
judgments, since each object placement (beyonddabend) implies multiple similarity
judgments. The task is commonly used (P&Ssyuelson, Malloy, & Schiffer, 2010; Hout,
Goldinger, & Ferguson, 2012; Kriegeskorte & Mur, 2012; Jenkins, Samuelson, Smith, &
Spencer, 2015), but it is not as popular as pagrtasks. SpAM is useful for the present
research project, because it offers unique taskactexistics to help identify general,
underlying similarity effects.

Unlike pairwise tasks, participants could see thestimulus set at all times in
SpAM. The time pressure was also the lowest oftiree tasks, precision the highest

(individual pixels of movement), and the visual gdexity and multi-step process invited

careful contemplation. Together, these factorsepBgAM as opposite the same/different
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task along the continuum of intentional, stratdggbavioral tasks. SpAM is also unique in
that responses are constrained to a particular ggpm

In both pairwise tasks, participants were freeite gesponses that imply any
feature space, Cartesian or otherwise (such astelgairs that either do or do not yield
equal similarity judgments depending on orddr).SpAM, however, judgments must
physically fit a Cartesian 2-dimensional space litertally exists on the computer monitor.
This provided some task variety, but interpretingequires caution. Some effects like
triangle inequalities are mathematicalypossible to observe in SpAM, due to the
mandatory 2-dimensional spatial arrangement. Orhane, this does mean that triangle
inequality cannot be a strictly task-general sintyeeffect, since SpAM is an established
similarity task and cannot always exhibit trianigiequality. On the other hand, this type of
mandatory 2-dimensional constraint is difficultitmagine in many natural similarity
judgments in the real world, and the task-speaifigossibility of the behavior may
therefore not be theoretically important or imphything significant about similarity
judgment processes in the brain. By contrast, dibeveen-task distinctions like fast-
paced versus slow-paced tasks or deliberative sgmassured tasks are more useful: both
describe natural contexts for similarity judgmesutsl neither mathematically determines
anything about which behavioral effects will or lwibt generalize. For these reasons, | still
evaluate violations of minimality and triangle indjty in upcoming chapters and in the

neural model, despite the caveat that they aralmsxlutely task-general.

® In the same/different pairwise task, correct ammbirect answers heavily discouraged judgments
that implied non-Cartesian, odd or disorganizedligaspaces, but such judgments were still
possible.
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Another potential complication of SpAM is that ada task-specific tendency to
emphasize conceptual and semantic relationshipspareeptual ones, unlike pairwise
tasks (Goldstone, 1994b). This issue was fully @&dj however, in my version, since the
stimuli used (described in the following sectiorgresnovel, artificial stimuli that had no
semantic or conceptual content.

Common Stimuli and Stimulus Sets

To quantitatively compare participants’ similaritggments in any given task to
the other tasks, to results from the literaturépanodeling outputs, it was necessary to use
a stimulus set with quantifiable feature values.object like a dog might have dozens of
feature dimensions—fur pattern, height, weightelrdriendliness, running speed, etc.—
which are hard to explicitly control and quantifyus, | used artificial stimuli instead,
which varied along well-controlled feature dimemsoThe dimensions used—specific
types of color hue and shape—have both been stpdigghometrically and at the neural
level using fMRI, and mathematical differences ketw feature steps are known to be
well-matched to psychologically perceived differesc

The full set of stimuli is shown in Figure 7. Thest dimension was a trigonometric
outline shape defined by a single angle paramBtercker & Aguirre, 2009). The second
was fill color, which only varied by hue accorditogCIE |*a*b color space. Both
dimensions are circular, but | sampled only hadf plerceivable range for each. This
allowed me to test for circular dimensional awassnea similarity judgments. At the same
time, this ensured that opposite corner stimulirfagpposite corners of Figure 7) still
remain more perceptually distant than any othenspaihich avoids the ambiguity of
participants potentially comparing pairs in twofelient “directions” around a circular

feature dimension. In a 180-degree sample, theyalysone clear directional relationship
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for every pairwise comparison. | sampled five stafjpsig each dimension, for a total of 25

stimuli.

s ARG P
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Figure 7: Stimuli used in behavioral experiments. Stimuli vary by a one-dimensional shape
parameter and by color hue. Both dimensions are sampled across 180 degrees of their full circular
dimensions.

All participants were introduced to the full seta& stimuli in an introductory
exposure phase of each of the three experimentsadyparticipants worked with the full
set of stimuli in test trials. Instead, each pgytiat made similarity judgments for sets of
16 items. Which 16 items a participant worked vdépended on which of two
experimental conditions they were assigned to.

The two conditions manipulated the degree of neagintod densities of objects.
Although a fully represented, square grid of stinsia common stimulus setup in the
similarity literature (Hout, Goldinger, &erguson, 2013; Kriegeskorte & Mur, 2012; Little,
Nosofksy, Donkin, & Denton, 2013; most experiments utilizing Gabor patches), grids do
not offer interesting variations in neighborhooadsigy.

Therefore, | divided participants in all three makto two stimulus conditions that

changed neighborhood densities: a “square” comditibere participants saw stimuli from

a typical grid in feature space and an “L” conditishere participants saw stimuli from an
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“L” shaped pattern in feature space. Figure 8 tithtes the two conditions. Objects in the
“L” condition had on average lower neighborhoodgignthan in the square condition due
to an “L” being a longer, thinner shape. In ordarldoth to have 16 items, the square

condition samples only a 4x4 grid.
XAl o] )
e
&

Figure 8: Experimental conditions. Square condition participants worked with stimuli from the blue
region of the full stimulus set. “L” condition participants worked with stimuli from the red region.
Some stimuli (purple) were seen by participants in both conditions. Both conditions include 16-
item subsets of stimuli.

The conditions also had the side effect of testgaration of dimensions. The “L”
shape separates out the two feature dimensiong #lertwo “arms” of the “L.” One arm
varies mostly along color, the other along shape. dquare condition does not separate or
highlight either feature dimension in any subseatoétimuli. This could have various
effects, which were difficult to predict, but wodidlely show in MDS visualization. One
particular possibility was that the manipulationudhighlight alignability effects, since
objects in one arm of the “L” are not very aligraklith objects in the other arm. There is
no sharp cutoff in alignability, however, in groupfsobjects in the square condition.

The two feature dimensions used in this stimultssecognitively separable

(Shepard, 1987). Because of this, a city-block tdemwvas used in all situations where
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distances along both dimensions were integrateddané overall distance for analysis
(Shepard, 1987).
Common Analyses

A fundamental requirement of testing for the tgekerality of behaviors is the
ability to analyze the data and detect similamtyehaviors across all three tasks in the
same way. Below, | first explain how each task’'gpotiwas standardized to a common
format, then | outline a series of analyses ttegiglied to the results of each task.
Standardizing Results

In the pairwise ratings task, the native answanédris a continuous similarity
rating. This only needed to be inverted to obtaadtandardized dissimilarity output
format that is most useful for MDS and other anedy410 — [a 1-9 similarity rating] = [a
1-9 dissimilarity rating]). In the pairwise samédfelient task, | repeated each pair at least 5
times for each participant. | obtained a partictfsarating of dissimilarity for a pair by
taking the proportion of repeat trials for thatrgaiwhich they answered “different.” For
instance, if a participant saw the same pair fine$ and answered “different” twice, |
took his dissimilarity rating for that pair to bet0This conversion was based on the
intuition that a participant’s indecision is proponal to the strength of his or her similarity
perceptions. In SpAM, | directly interpreted Euelish distances between pairs of placed
objects in pixels as dissimilarity scores.

Within each of the three tasks, after standardizavgresponses using the above
methods to all measure continuous dissimilaritigeh independently scaled the responses
of individual participants within each task suchtthll participants within that task had the
same average pairwise dissimilarity score. This negessary for each participant to

contribute equally to group averages. | did notestize three tasks to be equal to each
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other, however. Tasks were only compared to onéhanon measures of internal ratios
and relative relationships. The units of measurthéntasks were therefore unimportant
analytically and also held no external theoretinabning (e.g., pixel distance in SpAM is
only informative with relation to other pixel distzes).

Between-Subject Multidimensional Scaling (MDS) Analsis

MDS is a common analysis of similarity data usedisnoialize patterns of similarity
between sets of objects and to determine the nuofltBmensions participants are using
to make their similarity judgments. MDS takes gauima set of behavioral dissimilarities
for each pair of items in a set. Since my score®ewtandardized to dissimilarity ratings in
all tasks, MDS analysis was identical for all thtagks.

The MDS algorithm begins with the same numbereyhi as it is given in random
positions in an output space. It then moves itemellsamounts in random steps, checking
after every step to see if the change improveduardverall fit to data and throwing the
change out if it hurt fits. The exact details of g8tep change and fitting algorithms are
beyond the scope of this document, except to satlle version of MDS | used employed
non-metric, rank-order fits and used a city-blo@tahce measure, and an exponential
scaling. Non-metric MDS is used when different iméds in behavioral responses cannot
be guaranteed to be perceptually equal (Borg & Gne2005). Although my stimulere
controlled to have perceptually equal steps, mikstassponse formats were not, so | chose
a non-metric MDS analysis. City-block distancepprmpriate for my stimuli’s relevant
feature dimensions—while color features (hue, saitam, lightness) are confusable with
one another, and geometric features (orientatimape) may be confusable, my dimensions
of hue and shape can be well separated from orteem@hepard 1984). Exponential

scaling is a default choice after Shepard (1987gasnotherwise specially indicated.
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An MDS algorithm must be told how many dimensiamsi$e for its output space.
Conventionally, the valid choice for a number ahdnsions is determined by a “scree
plot.” The algorithm is run several times usindeliént output spaces with different
numbers of dimensions, and the stress value—the MB&sure of badness of fit of a
solution—is calculated for each result. The stkedges are plotted against the number of
output dimensions to form a line graph like the onEigure 9. The valid choice for the
final MDS is the number of dimensions where the Bhows a clear “elbow” or sudden
and unique change in slope (e.g., Wickelmeier, 2083 additional criterion is that MDS
results should differ significantly from those tlatuld be obtained from random data with
the same number of input objects, in order to enthat patterns observed are not
primarily or entirely due to noise. Since MDS opesaon rank orders and relative
distances, random data for any type of experiméetht avgiven number of items is
identical, and standard fit values and variancekaown for a set of a given size, such as

my 16-item sets (Spence & Ogilvie, 1973).

% | additionally verified all numbers derived frompéhce and Ogilvie’s tables using Matlab’s MDS
functionality.
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Figure 9: An example scree plot. Here, a set of dissimilarities has been input into an MDS
algorithm four times, with different numbers of output dimensions specified each time (1-4
output dimensions). The algorithm outputs a stress value, plotted here on the Y-axis. The valid
number of dimensions is where an elbow is formed by the graph.
A possible caution regarding MDS with my stimules is that since MDS assumes
a Cartesian feature space, it is not ideal to plediata from stimuli with two circular
dimensions (Borg & Groenen, 2005). Circular dimensicannot be represented in a
Cartesian space. Ambiguity regarding which “directiaround a circle to compare stimuli
would be particularly problematic in MDS. Howeveince my feature dimensions are both
sampled only from 180 degrees of a full circle, and direction in each dimension is
clearly implied between all objects pairs, the MBfalysis can treat both dimensions as if
the semicircular samples are “bent” slightly inb@aight lines, and any effect on results
should be minimal. This being said, there is preagdbr using MDS on circular
dimensions even with a full 360 degree samplingffaind, 1962), and there are theoretical
reasons to believe that circular dimensions mayltresvery specific MDS patterns if

perceived circularly. The resulting MDS patternsymat directly represent accurate

psychological feature space representationcéiutonfirm that dimensions are being
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perceived circularly (Shepard, 1985). | will dissubis latter point in greater detail in the
results of the first MDS analysis in the followingapter.
Individual Multidimensional Scaling Analysis

In addition to MDS solutions for average dissimtlaacross participants, | also
analyzed individuals’ MDS solutions. Ultimatelyyslarity judgments occur at the
individual level, and a general model of similanigeds to capture the range of common
individual behaviors, not just an averaged growgulte Average/group MDS solutions may
be representative of a single strategy shared ésyerdividual, but more likely, they
represent a blend of two or more distinct indiviquetterns. These individual trends
should be captured by similarity models and maydéemore theoretically informative
than the group result.

Two tests were performed on individual MDS resudtse subjective, one
automated. First, general “orderliness” of eachviddial MDS result was judged by raters.
Four raters blind to task type evaluated each MDtpud for the pattern of items output by
the algorithm. Raters quantified overall orderlme$ each pattern on a scale from 1-5
corresponding to random/undecipherable up to cthstinct patterns with no objects out
of place. Raters were told to not expect or prafer particular type of pattern (grids, lines,
triangles, clusters, etc.), but only rate pattemmsheir intentionality, consistency, and
orderliness. The results of these ratings were tesddop from analysis those participants
who all four raters unanimously judged as havingdecipherable” judgment patterns.
Across all experiments, only four participants werepped in this way.

The automated portion of analysis was performetetermine the degree to which
individual participants skewed their ratings of gamty by specific feature dimensions.

Both the square and “L” experimental conditionsev@&ymmetrical by feature dimension,
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with equal number of steps and distribution of stimlong each dimension. Thus, any
difference in final judgments when collapsing dateoss one dimension or the other
equates to a dimensional bias that may indicagatbinal modulation of feature
dimensions. The mere existence of attentional naddul is a behavior | wish to test for
task-generality, but if it does exist, | also ammuantitatively measure its magnitude and
use this to fit or improve modeling results. Theasw@e of attentional bias starts with the
MDS solution, and then determines the distance é&&tveach immediately adjacent pair of
stimuli in feature space—for instance, two stinthét differ by a single feature step in the
shape dimension, but match in the color dimendyrdefinition, all adjacent stimuli like
this vary by a fixed amount in one dimension (oiep)and not at all in the other.
Attentional bias was calculated as the sum of dhigaiities between pairs differing in
color divided by the sum of dissimilarities betweggirs differing in shape, or vice versa.
Aratio of 1 or 0 would describe completely ign@rione dimension, while a ratio of 0.5
would be no attentional bias at all.

MDS solutions in general (group or individual) alexcellent insight into
participants’ similarity perceptions. Solutions aeguired to fit into a valid Cartesian
pattern, however, and they may therefore be misigatiparticipants provide non-
Cartesian responses, which we expected them tGdldgtone, 1994b, Tversky, 1977).
There is no possible way to display, for examplangle inequalities in an MDS plot. No
graphical representation of a leg of a triangle lmaonger than the other two legs. It is
therefore important to test for similarity judgmdmthaviors like triangle inequality using
tests other than MDS. This is also true of circtdature dimensions perception,

neighborhood density, the principle of minimaléyd alignability effects.
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Circular Dimension Awareness Test

Participants may have perceived arc-based distdacescular dimensions, or
chord-based distances. Figure 1 shows this digimetithin each dimension. If chord-
based measure fit better to similarity judgmentawadr, this is an indication that
participants are aware of the circularity of featdimensions and that this circularity
affects similarity judgments.

This question of circular dimension perception wested outside of the context of
MDS, based instead on the standardized dissinyilacibres taken directly from each task.
| compared behavioral pairwise dissimilarities wptledicted dissimilarities using root
mean square error. | performed this test firsaforbased city block distance, then for
chord-based city-block distance, and identifiedlib#er fitting method.

Specifically, arc-based city-block distance wadmted as [number of feature
steps difference in color + number of feature stéffsrence in shape]. Chord-based city-
block distance was the same, but with chord lengthkcing raw number of feature steps.
For feature dimensions like mine with 5 featurgstalong a 180 degree semi-circle,
feature step differences of [0, 1, 2, 3, 4] coroegpto chord lengths of [0, 1, 1.83, 2.40,
2.56]. Better fits to chord than to arc-based didlarity was taken to imply an awareness
of circularity of feature dimensions. Better fitsdrc-based dissimilarity would be
ambiguous between circular versus linear dimensipe@eption.

Tests for Tversky Violations

For each task, | ran a set of tests to searchidtations of Cartesian feature space
assumptions, specifically those of triangle equalitd minimality (such as discussed in
Tversky, 1977). Triangle inequality is when objpatr (A and B) is judged more dissimilar

than the sum of dissimilarities of (B and C) + (#deC). In Cartesian space, one leg of a
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triangle defined by three points can never be lotigen the sum of the other two legs, yet
sometimes, participants will judge objects this wdyen able, such as in pairwise tests.
Inequalities can be detected by considering evetrpfsthree items in a stimulus set and
measuring each for whether one of the dissimiksits larger than the sum of the other
two. The result of this test is a count of trianiglequalities, considered in the context of
the total number of object triplets involved. lingpossible for SpAM to show triangle
inequalities, but the effect was analyzed in bathvpse tasks, and this provided some
evidence of task-generality.

Violation of minimality is most strictly when arbject is judged more dissimilar to
itself than to a non-identical object&or this test, | analyzed the standardized didaiity
judgments of every identical pair of objects anarsked for every other pair including that
object to see if any such pairs were judged mondai (less dissimilar). The result of the
test is a count of instances of minimality violatian the context of the total number of
similarity judgments.

Neighborhood Density Analysis

| tested for neighborhood density behavioral inflees by first assigning a
neighborhood density to each object: | counted idiate neighbors horizontally or
diagonally to each object in feature space fovamgiexperimental condition (square or
“L"), and the sum of these neighbors became thghiiirhood density of that object in
that condition. | then correlated these densitigs and the difference between observed

and predicted dissimilarity scores.

" Minimality violation can also arguably include @entity pair of objects not being rated as
similar as possible, but | did not analyze for tigjze of evidence, since it is potentially ambigsiou
with other causes, like people simply not usingttigeend of a similarity ratings scale, for
example.
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Standardized behavioral dissimilarity data alons esgpected to correlate
uninterestingly with neighborhood density, simpichuse neighborhood density was, for
example, lower near the corners of a grid of stipand higher near the middle, and these
positions were also related to average distancethtr objects. By calculating the
difference between behavioral similarity ratings and predictimilarity ratings instea#l,
predictable factors like position in stimulus featgpace cancel out. All that is left in the
difference is thextra dissimilarity above and beyond that predicted ffeature space
distances alone. It is this exaggeration (or suggpo@) of dissimilarity beyond Cartesian
feature space predictions that has been showrsinifeature (Krumhansl, 1978ove,
Medin, & Gureckis, 2003).

Alignability Analysis

Using the same method as neighborhood densityréleted the alignability of
object pairs with the difference between predi@ed observed dissimilarity scores.
Alignability | operationalized as the lower of ttweo numbers of feature steps along color
and shape dimensions, or the difference along th& similar dimension. If objects are
two steps apart in color and three in shape, diidjbais two. If objects match on either
dimension, alignability is zero, and so on. Agaiinterestingly, if two objects have fewer
feature steps between them, they will tend to dggd more similar purely due to being
closer in stimulus feature space. However, by udifigrence between predicted and
observed similarity, the uninteresting feature sgarediction from input stimulus

differences alone cancels out before a correlas@®termined.

8 The predicted values for a given task were sirtipdycity-block distances between objects in the
input stimulus feature space.
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Limitations to Theoretical Interpretation of Results.

For some of the above analyses described in thigteh results superficially
contradicted the findings of established effectthaliterature. It is important to note that
the tasks | am using were not intended to rigosotest or challenge specific behavioral
effects from any specific previous experiments. &ample, none of my tasks matched the
procedural details of those used in the past teatiefignability effects. Typical alignability
experiments involve explicitly writing down a list differences in words, whereas all of
my tasks used non-verbal similarity judgmentsill ahalyzed alignability effects in all
three tasks, but this served as a test of taskrgiiyenot as a critical replication of, for
example, Gentner’s (1983) theory or behavioral .ddtm-replication in a task that is
different from the original task is, however, vafididence that an effectmet task-
general, and testing task-generality is the primary gdahe tasks and analyses in the
empirical portion of this thesis.

In the following three chapters, | describe thegperiments, one that uses each of
the three behavioral tasks introduced here. | évauate the evidence or lack thereof for
the set of similarity judgment behaviors testedhgylist of analyses above, and | discuss
the theoretical implications of these results imig of task-general similarity judgment
processes. The behaviors found to be task-gendralernwe as a basis for modeling in

chapter 6.
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CHAPTER 3

EXPERIMENT 1 — PAIRWISE RATINGS TASK

The pairwise ratings task served as the first ifahasks to be compared to one another to
determine task-general patterns of similarity jueégis. In the pairwise ratings task,
participants were shown all possible pairs of disjene at a time and were asked to
provide a 1-9 similarity rating of each pair. FigurO depicts the decision portion of a
single trial of the task. Stimuli to compare appebabove a visible ratings scale on a

computer monitor. Participants clicked a locationtloe ratings scale to respond.

< >
1 2 3 4 5 6 7 8 9

Least Most

Similar Similar

Figure 10: The decision portion of a pairwise ratings trial. Two objects to be compared appear in
the top portion of the screen, and a labeled ratings scale appears below. Participants have as long
as they desire to click on one of the numbers on the scale. In between object displays, a fixation
cross appears in the space between the objects in this figure for 500ms.
Pairwise ratings tasks like this one are the mostraonly used tasks in similarity

research. Pairwise ratings are simple and straigh#lrd to explain to participantdey are
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technically easy to implement in the laboratory; and the task forces minimal constraints on
participants’ answers. For all of these reasonsywse ratings tasks are ubiquitous, and
there are more known behavioral similarity effébtst have been discovered using this
task than any other. This makes a pairwise ratiagjs the richest opportunity for
replicating several meaningful patterns of similajudgments and verifying that stimuli
and analyses used were sufficient to capture krimetrvavioral results, before continuing to
test for task-generality in the other two, lessidtad tasks.
Methods

Participants

Twenty participants were recruited from the poohofintroductory psychology
course in a Midwestern town. Three participantsewlropped, one participant because the
MDS algorithm was unable to converge on a solutoohis individual ratings, and two
participants because all four raters unanimouslgea their individual MDS ratings to
have the lowest allowed rating for meaningful patt@ organization of judgments.
Stimuli

This experiment used the set of 25 stimuli desdribechapter 2. All participants
were exposed to the full set as a preview at te st the experiment. Participants were
then divided into the two conditions describediear-square and “L” subsets—for test
trials. Each participant therefore saw pairs dutes from within a 16 item subset for their
condition, equaling 136 possible pairs. Participamtre shown each pair twice, for a total
of 272 trials per participant. The order of the Veheet of 272 trials and the order of objects
within pairs were randomized for each participand presented in a single block.
Introduction to stimuli at the start of the taskndomization of trials, and redundancy of

trials were all implemented to reduce possible Hizs to the order of trials.
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Procedure

After giving informed consent, participants wereedted to a computer terminal
with a mouse, keyboard, and Dell 12"x15” 60Hz (12BW24 resolution) monitor about 20
inches from their seat. All subsequent instructimese text on-screen.

Participants were first instructed to watch theesarpassively while the full set of
stimuli was shown as a preview at a rate of onersper stimulus, in the center of the
screen. Participants were then instructed,

“In this section of the experiment, you will be shopairs of objects from the set

you were shown at the start of the experiment.dlé@ok at the black + in the

middle of the screen when it appears. You will seeimerical scale 1-9, with 1

being least similar and 9 being most similar. Rledek on a number to indicate

how similar you think each pair of objects is, advag to this scale.”
At the start of each trial, a central, black fixaticross was displayed for 500ms. The cross
was then removed, and the two stimuli were displagethe left and right of the cross’
previous position, separated by a total of 7.9 eegof visual angle of white space.
Participants responded by clicking on the ratirgjesat the bottom of the screen. The
rating scale was labeled with “least similar” amadst similar” at the 1 and 9 ratings
endpoints throughout the experiment.
Analysis

The analyses described in chapter 2 were applidigdask. To standardize the
pairwise ratings data into the cross-task format lxét of pairwise dissimilarities, each
rating from the raw data was subtracted from 1@h#r ratings correspond to greater
similarity on a 1-9 scale, so the formula (10 @t yields a 1-Qlissimilarity scale instead

that is easier to analyze and required for MDS.
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Results
Group Multidimensional Scaling

Group MDS solutions used the average dissimilaatygs of each pair of objects,
across all participants, and across both presentatf each pair of objects per participant.
These were converted into rank order before the M@$§ solved, as part of the non-metric
MDS algorithm used.

MDS analysis provides a visualization of the clo$ie®f pairwise data into a
Cartesian space with a specified number of dimessidhe specified number of
dimensions needs to be determined before resultbeaterpreted. This depends first on
a “scree plot” of the stress values of MDS solwi@rnth various numbers of dimensions.
The scree plot for all three experiments (pairwaengs, pairwise same/different, and
SpAM) is shown in Figure 11. The appropriate nundfetimensions is where the scree
plot shows an “elbow.” This point is where the Egggain in fit is achieved for a given
cost in parsimony (higher number of dimensiongdijt Beyond the point of the elbow,
additional parsimony yields disproportionately dimshing returns in goodness of fit.

All conditions of all tasks show an elbow at twongnsions, with possibly one
subjective case for the Experiment 2 square canditiowever, even in this case, there is
no better elbow, only a potential lack of an elbow. Flattarves in MDS solutions imply a
higher rate of noise, not any conclusions abouedsionality (Spence & Ogilvie, 1973).
Thus, the Experiment 2 square condition MDS sofusbould also be assumed to best fit
2-dimensions: if there is any elbow in its screa gt is at two dimensions, and if there is
not, then the two-dimensional solutions of the ptlets are the best evidence from which
to infer a two-dimensional solution for the finaindition as well. Overall, then, all MDS

algorithms were run here as two-dimensional onearalysis.
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5 Exp. 1,“L" Condition

Exp. 3, Square Condition
Exp. 3,“L" Condition

MDS Error Value

0.3
Dots = random data results
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Number of Dimensions Fitted by MDS

Figure 11: Scree plot for group MDS analysis. This plot includes all tasks and conditions. All
plots show a clear elbow at two dimensions, indicating a two-dimensional best blend of parsimony
and data fit. All conditions are significantly different than random data fits at two dimensions.

A second check to perform on MDS analysis befoterpreting is to compare fits
to those of randomly generated data. If a solusaro better than that for random data,
then any patterns seen in the MDS solution woubtb@ibly only be artifacts. Thus, if any
MDS solution does not fit actual data better tremdiom data, MDS is not a good
analytical tool for that data. To decide on an appate statistical test, | considered
whether each individual condition’s MDS solutionsres significantly different from
random fits or not, and only considered them araddie if they were. Also, since a two-
dimensional MDS solution was already decided fbcanhditions, only two-dimensional
results need to be compared. Finally, MDS is basea random starting set of positions
for objects, and every run of the algorithm canlesétto different local minima: MDS
solutions for one set of data can be consideredgasup of data points with a variance.

Given these conditions, a set of t-tests was censtimost appropriate, comparing each

set of 2-D MDS solutions on behavioral data t@wdsesponding set of 2-D MDS solutions
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on random data, with any individual condition needio reject the null hypothesis for
MDS analysis to be applied to that condition. M tstests (with 50 runs of behavior and
random data each) rejected this null hypothegis<a0.0001. MDS analyses of these tasks
and conditions can therefore be assumed to be sganweaningful patterns from similarity
judgments.

Once the appropriate number of dimensions wasméted and checked against
random data fits, the best-fitting MDS solutionshathose numbers of dimensions were
chosen out of 50 runs. These are shown in Figur&féen lines connect objects that share
a color, and red lines connect objects that shalepe. Blue lines in the “L” condition
indicate the two end pairs of the “arms” of the “tbne would normally be red and one

would be green.
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Square Condition 3 “L" Condition

Figure 12: Group MDS solutions for the pairwise ratings task. The square condition shows a clear
grid except for two of the color values being confused with one another (green lines flipped or
overlapping). The “L” condition shows an “L” shape that has slight curvature, a more obtuse angle
than the expected “L,” and an attentional shape bias (longer green than red lines).

As seen on the left in Figure 12, in the squarelitam the results of MDS analysis
roughly fit a square shape, indicating that pgrtaits were largely driven by direct, classic
feature comparison in their judgments. Recall buth feature dimensions of the stimuli
are circular, so the curvature seen in this pafi@nd the “L” pattern) is not unexpected,
although the formal test for curvature for thesksavas not based on MDS results. Colors
4 and 5 appear to have been often confused byipantis, causing the top two green lines
to wave in and out of one another, but otherwise,ather 19 feature value comparisons
were judged in the order expected. In the “L” cdiodi, results are much more distorted,
although in two specifically identifiable ways. $iirthe “L” has been bent to become more
obtuse, which means that participants saw the afrtige “L” as artificially more different
than is implied by the raw feature values alonas TWould be consistent with seeing each

arm as an ad-hoc category and accordingly inflatiegdistance between categories (Hund

& Plumert, 2013; Hund, Plumert, & Benney, 2002), but there is not enough evidence from
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the data to conclude this for sure. The second maligtortion is that both arms of the “L”
are noticeably wider along the green lines. Thasl$eto the fat and skinny look of the two
arms and can be a result of simply participantadeiore attuned to shape differences
than to color ones. Why such a bias would only appethe “L” condition and not the
square condition is unclear. Overall, participaitewed some minor distortions—
curvature, a widened “L”, and a shape bias in ttiecondition, but otherwise performed
according to the mathematical metrics of the irfpature values.
Individual Multidimensional Scaling

Individual MDS solutions served two major functiorisis possible that group
MDS results show unrealistic patterns that ariselgudrom averaging other patterns.
Thus, the first function of individual MDS solutisnvas to test whether the overall results
fit any individual’s judgments. This was done bgkeg at individual’s MDS solutions
and verifying that at least some participants’ jmegts showed similar patterns to those of
the overall group. In this experiment, there wérsgh correspondence between individual
MDS solutions and the group average MDS solutibigure 13 shows example individual
MDS solutions for two of the participants in thekaone from each condition. The
patterns match those of the corresponding overallgMDS outputs remarkably well,
except that this particular “L” condition participtadid not show a shape bias like that seen
in the averaged data. It is clear from these reshét the overall group results in the
previous section can be interpreted as behaviomallyst and not an unrealistic artifact of
averaging.

However, no&ll participants match the group patterns. The secpplication of
individual MDS analysis was to allow examinatiomahority patterns of similarity

judgments that differ from the overall group pattbut that are still systematic and reflect
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a general model of similarity that may still beuadble to capture in the model. In the “L”
condition, the individual shown in Figure 13 matdhke group solution in every respect
except as strong of a shape bias, and good maitcigeseral were found between

individual and group results. In the square cooditthree pattern types were observed.

The first was the roughly square match to the feadimensions used as input, seen in

Figure 13.

Al Square Condition [ “L* Condition
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Figure 13: Two individual MDS solutions. One is from a participant in each condition, who
correspond to the same patterns as the group MDS solutions in Figure 12. Not every participant
matched group results like these, but these data suggest that the group results are behaviorally

realistic and are not artifacts of averaging.
The second and third patterns are shown in Figdir®©he is simply disorganized.
Participants like these were rare and were drofqoed analysis if four out of four raters
indicated a score of 1 out of 5 on a scale of inbeal-looking organization to MDS
outputs for individual solutions. Ten percent dhtgarticipants were dropped for this
reason—two from the pairwise ratings square coomlifl he other pattern resembles a
thick line or rope. This is the result of extremenensional bias. In the example in Figure
14, green lines are stretched much further and showe consistency in relation to one

another than do the shorter, haphazard red lirfes.participant judged similarity as if

objects were grouped almost entirely by their seaped almost completely disregarded
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color, both in meaningful pattern and in raw amaafritnpact on similarity judgments.
This suggests that the participant attended motieet@ntire shape dimension than to the

entire color dimension.

34 Disorganized ~l_
253

High Attentional Bias

&}
]

Figure 14: Two additional individual MDS solutions. Both are incidentally from the square
condition, demonstrating the two major non-Cartesian MDS individual solution patterns. On the
left is an example of a disorganized pattern that was dropped from analysis. On the right is an
example of a highly attentionally modulated pattern—this participant is showing a strong bias
toward judging objects by their shapes and mostly ignoring their colors.
The latter variable was quantified more formallydmynparing the average length

of green lines to the average length of red lireea matio for each participant. In the square
condition, the geometric mean ratio was 0.39 redtle : green length (geometric standard
deviation 5.33), representing a bias toward shapsglinfluential for similarity judgments
(1.0 would be equally balanced). The most extrerag in a single participant in the square
condition was a 0.083 ratio. In the “L” conditiayeometric mean bias was 0.38 (geometric
standard deviatio.85), which was also biased in the same directiod,the most

extreme individual ratio was 0.064. Some participatid show color biases, the largest of

which was a 1.56 ratio (or 0.64 if measured indpposite, green : red ratio).
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Circular Dimension Awareness Test

Participants performing the pairwise ratings tasild have judged similarity
according to either an arc-based or chord-basedntis measure because both dimensions
used in these tasks are circular. To test eadhesktpossibilities, a simulation was run to
predict the judgments of a hypothetical participagitdly employing each type of possible
distance measure. Each pairwise distance was atduirom the raw numerical feature
distances using arc or chord assumptions. Actuzd\beral data was then compared to
each of these different predictions using root negarare errors by object pair. Group
averaged data were used for these comparisong)dieitiual data. Data were in the same
standardized format used as an input to the MD§/sisdanalysis wasot based on the
output of the MDS analysis).

Results were in favor of the chord-based metrie karge margin in both
conditions. RMSEs in the square condition werefdr£&hord-based and 1.79 for arc-based
fits. RMSEs in the “L” condition were 0.87 for clibbased and 1.70 for arc-based fits. The
best fits to behavioral data for both square aridctinditions were simulations using
chord distances within feature dimensions. Thetfzat chord-based distances were used
suggests that participants recognize the circylafithe circular dimensions.
Tests for Tversky Violations

Behavior was tested for triangle inequalities aradations of minimality, as
outlined in chapter 2. Triangle inequalities weetedted in the pairwise ratings task. This
task included 560 different combinations of thregots among the 16 objects in each
condition. Each of these triplets of objects candsted for triangle inequality. Each triplet
A, B, C has three distances, AB, BC, and AC. Tramgequality is when one of those

distances is greater than the sum of the other®uo of the 560 triplets in the group data,
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zero inequalities were found for the square cooditall triplets of objects could form
geometrically possible triangles. Fifteen inequeditvere found for the “L” condition—in
other words, fifteen of the triplets of objects hpadrwise ratings that could not form any
geometrically possible triangle, due to one legnpdonger than the sum of the other two
legs. Across all triplets of all trials of individls, there were still zero inequalities found in
the square condition, and 805 inequalities founithé“L” condition (out of 5,600 triplets).

Violations of minimality were defined as any paimon-identical objects that was
rated more similar than trials with the identicalrp of either of those objects. Group data
in this task showed no violations of minimalitydimidual data in total showed 50
violations in the square condition across all $riafl all subjects (1,904 total) and 16
violations in the “L” condition (out of 2,720 trsil.

The fact that both types of measured violation€aftesian assumptions were
observed in this task implies that feature comparisas not the sole basis of similarity
judgments. These results also imply either a nomneSian representational space for
objects or an external modification of the input®otputs of that space, such as an
influence of object salience in boosting objectespntations unevenly.

Neighborhood Density Analysis

Densities moderately correlated with differencesvieen observed and expected
similarity judgments. Neighborhood density for eatiect was the number of neighboring
objects immediately adjacent to that object velligchorizontally, or diagonally in a flat
conception of feature space for each conditionoBject in the corner of the square
condition, for example, has 3 neighbors, one td@didwo sides, and one diagonal. An
object in the center of the square condition hasi§hbors, one in each surrounding

direction. Density for a pair was the sum of deesibf the objects in the pair. Pair density
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was then correlated with the difference betweedipted and observed dissimilarity for
the same object pairs. Predicted dissimilarity n&sed on the chord-city-block distance
based on the circular analysis in the results @e@bove. Correlations showed anr =
0.248 for the correlation between densities andrdences for the square conditions and r
= 0.288 for the “L” condition. Both correlations meesignificant p < .05). Thus, object
pairs with more near neighbors in feature spaceetno have their ratings of dissimilarity
exaggerated compared to pairs with one or both reesib sparser areas of feature space.
This finding suggests an expansion of feature spadense feature space neighborhoods.
Alignability Analysis

Alignability effects were weaker. Alignability if¢ degree to which two objects
match on their most similar feature dimension. Ndignability, then, is the minimum
value between color distance and shape distanffer&ice between observed and
expected similarity judgments is the same as im#ighborhood density test above. Non-
alignment correlated with observed-expected diffees in the square condition atr = -
0.07 and in the “L” condition at r = -0.06. Bothroslations were weak but still significant
due to high Ns (2176 in square and 2448 in “L” dbods). The negative coefficients
mean that more aligned objects lead to exaggethissnilarity ratings compared to
equivalent pairs with the same distances but legsmaent. In other words, two objects at
X distance where X is mostly composed of distarieegathe color dimension (more
horizontal or vertical in feature space) will telocbe rated as more dissimilar than two
objects, also at X distance in feature space, ltht ¥vcomposed of equal distance along

both color and shape (more diagonal in featureegpac
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Discussion

All tested effects showed meaningful patterns is thask, providing an excellent
baseline for establishing potential task-generallarity judgment behaviors over all three
tasks in this dissertation.

Group MDS analysis indicated a strong core reliaorceasic feature-comparison
as a factor in similarity judgments across mosjexib and in group means. This was
modulated by attention to individual feature dimens (not just to feature values) in
several, but not all, subjects, with a shape ateritias more common than a color
attention bias. The “L” condition showed a moreusiet angle between the “arms” of the
“L” than is suggested by feature values alone. @ese of this effect is unclear, but it can
be tested across tasks for potential task-gengralit

Individual MDS analyses corroborated the group ltes&ome specific participants
showed the same patterns as the group averagesingdaat the group results are not
merely an artifact of averaging but represent iialial behavioral patterns as well. Three
types of patterns seen in the group results, nbmdnich are surprising: disorganized
patterns were likely from noisy or inattentive papants and were dropped from analysis,
feature-comparison patterns closely matched imgatufe values, and high attentional
modulation resulted in some participants havingtelted patterns, with one feature
discriminated in similarity judgments but not th@er. Attentional modulation of an entire
dimension could be due to a task being perceivadadifficult. If a participant is
overwhelmed, due to judging two circular dimensiahence, for instance, he or she could
simply give up on considering one of those dimemsiéttentional modulation, especially

when not at an extreme ratio, could also indicaéeenpersonal preference or temporary
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salience of a dimension in the task, with partinigastill recognizing both dimensions but
being influenced more by one than the other.

Circular awareness test results were meaningfoligh not surprising. Previous
studies have shown that people employ chord-baseghde measures when working with
uni-dimensional stimuli (Shepard, 1962). Here, rified that this perceptual bias toward
chord distance extends to stimuli composed of twwautar dimensions at once, in the
pairwise ratings task.

Violations of minimality and triangle equality wengore surprising. These
violations are typically discussed in the conteéxinore complex stimuli than | used, for
example, semantically meaningful stimuli, and/odifficult, high pressure tasks. This task
used relatively simple, artificial, non-semantiecratli. There should also have been no
strong bias based on the right or left placememhh@fobjects on the screen (plus, these
positions were randomly assigned), and the tastegbwas stable over the experiment.
The exact cause of the inequalities is thus uncérough interestingly, all triangle
inequalities occurred in the “L” condition. Thidedt may be related to the warping of the
“L” judgments to exaggerate differences betweerefats of the two arms of the “L” as
seen in the MDS results. The “L” condition is nhgly less “accurate” compared to
Cartesian predictions overall, either, becausestjuare condition showed a noticeably
higher rate of violations of minimality.

Neighborhood density effects were weakly to modsdyadtrong. Greater
neighborhood density correlated with a tendena@xiggerate dissimilarity, the equivalent
of “expanding” feature space more in densely reprtes] regions. These results are

consistent with neighborhood effects previouslyaoied in the literature and models of
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similarity that account for neighborhood densityyihansl, 1978Love, Medin, &
Gureckis, 2003).

Alignability effects were very weak, with r valukess than 0.1 in each condition,
but the effects were statistically significant andine with known effects in the literature.
As objects become more alignable (more closely nragcin bothor just one feature
dimension), participants tend to exaggerate thssimhilarity compared to other pairs at
the same distance in feature space but not matelsimgell along the most similar feature
dimension (less alignable).

Overall, data from the pairwise ratings task regibd several known behavioral
effects in similarity judgments and established memds as well. To some extent, these
findings already reveal clues about general sifylgarocesses. Most notably, the results
of the current experiment suggest that the reptatens of the stimuli underlying
participants’ judgments include a strong featureyparison componenthat participants
are generally competent at dealing with circulanehsionsand that Cartesian
assumptions are violated in pairwise similaritykgadJIltimately, however, the primary goal
of the experimental portion of this project is ésttwhich of these behavioral results are
consistent across task contexts, and therefore which shceikdken as the most
informative indicators of underlying general simitya processes. Only by comparing to
additional tasks addressed in the following twoptBes can we establish which of the

current results are most relevant to a general traddgmilarity.
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CHAPTER 4

EXPERIMENT 2 — PAIRWISE SAME/DIFFERENT TASK

The speeded pairwise same/different task resentkegairwise ratings task in that pairs
of items were displayed at a time for similaritdguments. Instead of rating similarity on a
1-9 scale, however, participants were given onky tesponse options: “same” or
“different.” Also unlike in the ratings task, theswer choices (“same” and “different”)
were explicitly defined for participants, creatiagy objectively correct and incorrect
answer on each trial. Participants were remindetiisfoy feedback after every trial. The
existence of correct/incorrect answers and feedbaditiced the likelihood that participants
would consciously react to patterns like circulanensions or neighborhood density, since
those variables are irrelevant to correct answiédrs.same/different task is therefore biased
toward showing automatic, low-level similarity effe more so than the pairwise ratings
task.

Samel/different trials were faster than ratingddriRarticipants used the keyboard
rather than the mouse, and they were given expilicé pressure in the form of a buzzing
sound for taking too long on a trial. Trials on &age in this task were about three times
faster than in the ratings task (mean 0.84 secoaidsis 2.57 seconds per trial). This speed
difference served as a further test of generaliicalbetween tasks.

Methods
Participants

Twenty-two participants were recruited from the Ipafaan introductory

psychology course in a Midwestern town. They warelomly assigned to the same two

conditions as the prior experiment. Four partictpamere dropped: one per condition for
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failing to meet a pre-determined accuracy cutoff@¥% correct trials, and one per
condition due to all four raters unanimously judgtheir individual MDS ratings to have
the lowest allowed rating for meaningful patterrooyanization of judgments.

Stimuli

The same set of 25 total stimuli was used as ipteeious task, and the square and
“L” conditions were the same, still consisting @& item subsets. Each pair of objects
appeared between five and six times for each [jzetic. This is a higher number of
identical trials compared to the ratings task (Whad 2 identical trials per pair). This is
due to the fact that similarity judgments in thens&different task are computed as a single
ratio of “same” : “different” responses acrossrafpeat trials for any given pair. Therefore,
having two identical trials for a given pair woudd analogous to a 1-3 ratings scale, three
identical trials would be analogous to a 1-4 ratingale, and so on. Five to six identical
trials was used in this experiment for a numbeeatons. First, five to six identical trials
is analogous to a 1-6 or 1-7 ratings scale, whildwa more precision in analysis. Five to
six identical trials per pair also resulted in tighest number of total trials that
participants were able to reliably complete in H-haur experimental session. This is the
unit by which compensation was awarded in the latooy, and hour-long sessions for a
similar task in previous studies proved too longsiabjects to remain attentive and
accurate.

Overall, each participant completed 728 trials &gqicondition) or 740 trials (“L”
condition). The inconsistent number of trials beaweonditions was due to the constraints
of the same/different task. In this task, similahtd to be defined in order for there to be a
correct and unambiguous answer for each trial sfudctive definition of similarity was

used in this task, which means that “same” is éffety defined as “matching along at
73

www.manaraa.com



least one dimension.” Specifically, the instruci@iven to participants were, “Different’
pairs are pairs where both objects are differeVIERY way. ‘Same’ pairs are the same
in ANY way.” The numbers of “same” and “differen&sponses under this definition are
not equal. Figure 15 shows why this is the casplgcally. Depending on the number of
stimuli and their arrangement in feature spacerdtie of “same” to “different” answers
changes. In the square stimulus set to the Idfignire 15, a given object (black cell) is the
“same” as six other objects (green cells) and édéht” from nine other objects (red cells).
In an “L” stimulus set on the right of Figure 1Big ratio changes. Objects in the “joint”
portion of the “L” have a higher ratio of “same” tolaes, and objects in the arms of the

“L” have a lower ratio of “same” matches.

6 Same, 8 Same, 5 Same,
9 Different 7 Different 10 Different

Figure 15: Allocation of same and different answers. Depending on the shape of the
stimulus space, there are different numbers of “same” and “different” answers between a given
stimulus and all the other stimuli. In order for the task to have the same number of overall “same”
and “different” answers, different numbers of extra same trials are needed.

Specifically, for the square pattern, there werésgdne” pairs and 72 “different”
pairs overall. For the “L” pattern, there were 8arhe” pairs and 74 “different” pairs. An
equal number of each type of correct answer is eotional in any forced-choice task,

however, to reduce possible confounds and biasescipants therefore received extra
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“same” trials until the rate of each type of resppwas equal for their condition. Starting
with five exposures to each pair of objects, tbiguired five (exposures per pair) times
eight (to correct from 64 to 72) trials for the ageicondition = 48 extra same trials and
five times twelve (to correct from 62 to 74) = 6Qra same trials for the “L” condition.
Five exposures to each possible pair between dfuktyields 680 trials, and when the
extra same trials are added, the total becomesré&it8 or 740 by condition. The particular
pairs that received sixth exposures rotated betwabjects.

The order of presentation for the full set of eitii28 or 740 trials was randomized
for each participant and presented in a singlekbloc
Procedure

The computer station, seat position, stimulus sind, 25-item pre-exposure phase
were the same as in the pairwise ratings taskickemts then received the following set of
instructions:

“In this section of the experiment, you will be shopairs of objects from the set

you were shown at the start of the experiment. Yolis to decide whether each

pair is a ‘same’ or ‘different’ pair. ‘Different’grs are pairs where both objects are

different in EVERY way. ‘Same’ pairs are the sam@aNY way.

The ‘A key on the keyboard means ‘same.’

The ‘L key on the keyboard means ‘different.’

It is important that you provide your answers aslQKLY as possible while still

being accurate (a check mark or X’ will tell yduybu are correct).
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Please look at the black + in the middle of thesorwhen it appears.

Always answer quickly. You will receive a warningusid if you are slow in

answering.”

On each trial, a central black fixation cross waespnted for 500ms before each trial, as in
the pairwise ratings task. The cross then disagdeand stimuli were presented to either
side. Participants responded by keyboard. Whichckesesponded to which answer was
counterbalanced across patrticipants. If the ppdit did not answer within 1500ms, a
loud, annoying buzz sounded, but the trial stilitomued until participants responded to
ensure data was collected for every tfial.

Participants were given feedback at the end of g&dhn the form of a large red
“X” or a green check mark, centered on the scrpesented for 500ms. Feedback was
provided so that the participants would not strayfthe instructed definitions of “same”
and “different” into other possible definitions—nie®tably from a disjunctive definition
to a conjunctive definition. Feedback also encoadgggrticipants to continuously
concentrate on accuracy, helping to ensure thasamjarity effects outside of following
task instructions were not intentional.
Analysis

Analysis followed the same pattern as the painnasiegs task. To standardize the

same/different data into a list of pairwise dis$amiiies, the proportion of “different”

® The buzz was created by using Matlabagion 2009a; MathWorks, Inc.) soundsc() function
with the array argument equal to the tangents ®®@-and with a sampling rate of 5,000.
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answers out of all repeat trials with a pair ofemlt$ was used as a similarity rating. For
example, if a given pair of objects appeared snet for a given participant, and he or she
responded “different” on 4 of those trials, thesdislarity rating for the pair would be
scored as 4/6 = 0.67. The ratio ignored the coaesters for a trial, since a participant’s
actual response was considered indicative of ffeception of similarity, regardless of
whether the answer was correct. The maximum siityilacore for a pair was therefore O
and the maximum dissimilarity score for a pair a3 his conversion captures the
intuition that that participants who are unsurewthhether a pair is similar or different
are more likely to be inconsistent in their judgitsess the trial is repeated throughout a
half hour task, just as an unsure participant walittk on a mid-range value in the
pairwise ratings task.
Results

Group Multidimensional Scaling

Group MDS analysis used standardized input. This avigst of converted
dissimilarity ratings by object pair, averaged asrall participants.

As described in chapter 3, all conditions of adkimshow an elbow in their MDS
scree plots at two dimensions, and all conditiogsifscantly differ from patterns derived
from random input at this number of dimensions. S tanalysis for MDS results in this

task continued at the two-dimensional level. FiglBeshows group MDS results.
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Square Condition ) “L" Condition

05 " ¥ 0 o5
Figure 16: Across-subject MDS solutions for Experiment 2. The square condition shows a grid with
confused color values. The “L” condition shows a noisier version of the pattern seen in the ratings

task.

It is immediately apparent in the figure that MBSSults for the same/different task
are noisier and less organized than in the ratimgls This is likely due to two factors.

First, the statistical power of the task is lowfere to six repetitions of a binary measure is
not as precise as two repetitions of a nine-levesare. Second, the measure of similarity
in this task was a non-conscious one, derived filata spread out over hundreds of trials

for every data point and dependent upon participenatrs to show meaningful patterns.

This last point is illustrated in Figure 17 whidiosvs the MDS two-dimensional fit to a
hypothetical participant in the same/different tasth perfect accuracy.

To the left of Figure 16, participants’ judgmentsm the square condition still fall
somewhat in an orderly grid, but with slight confusbetween shapes 4 and 5, and much
confusion between all colors. The fact that allegrénes are mostly horizontal and all red
lines mostly vertical implies participants stillrpeived feature dimensions as orthogonal,

but they did not judge similarity according to theended order of feature values as well as

in the pairwise ratings task. The “L” results te tiight of the figure resemble those from
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the ratings task, but with generally more noisee Tt shape is still perceptible, and the
green lines are still longer on average than tbdines, implying a shape bias. The angle
of the “L” no longer appears obtuse, but closahtoriginally expected right angle,

suggesting a more feature-comparison-driven siitylardgment process on this count.

B A

Square Condition ., “L" Condition

Figure 17: MDS solution to perfect accuracy. The patterns resulting from following task
instructions do not resemble the actual MDS solutions, those from the ratings task, or traditional
Cartesian predictions.

Individual Multidimensional Scaling

Analysis of individual MDS plots serves as a tdswbether the group MDS
solutions are realistic at the individual-participevel or artifacts of averaging a set of
many other patterns. Figure 18 shows example iddatiplots from each condition. The
square condition participant in the top left of flgeire did not show equally grid-like
patterns in MDS results as the group solution eladf the majority of solutions for the
square condition were as in the figure, attentigralbdulated toward one dimension or
the other. This is still evidence for feature-commgan based judgment, but not of both
dimensions at once as the group solution sugdeatker, the aggregate grid-like group

solution is likely deriving organization in eachrginsion from different individuals

attending to each dimension separately. The “L’dition also showed attentionally
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modulated solutions, but a higher proportion ofamiged individual solutions. The
individual to the top right of Figure 18 shows dusion matching the general shape but
actually more organized than the group result doskc to the solutions from the ratings
experiment. There is a clear division between arhige “L,” a shape bias, and a degree of
curvature. The two participants in the bottom lsdlFigure 18 show other individual
representative solutiom®t chosen to most closely fit the group results.

One participant in each condition again was ratethaximally disorganized by all
raters and was dropped. In general, no new patteens observed compared to the ratings
task. Fewer, but still some, well-organized pgpeits were found, as many disorganized

participants, and a larger number of attentionabdulating participants.
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Figure 18: Individual MDS solutions. The top row shows individual solutions closest to group
solutions. The bottom row shows two other less closely matching individual solutions. The left two
participants are from the square condition, and the right two are from the “L” condition.

Degree of attentional modulation was again testethgtatively. In the square
condition, the geometric mean ratio was 1.84 radtle: green length (geometric standard
deviation 2.98), representing a bias towesidr being influential for similarity. The most
extreme bias in a single participant in the sqearelition was a 17.86 ratio, biased toward
color. In the “L” condition, geometric mean biassMa71 (geometric standard deviation

3.81), biased toward shape, and the most extredidgdnal ratio was 0.072 toward shape

(another participant was biased at 10.75 towardrol
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Circular Dimension Awareness Test

This test was performed the same as in the paimaisggs task. Results were once
again in favor of the chord-based metric, thouglalbgsser margin. RMSESs in the square
condition were 0.20 for chord-based and 0.23 fortased fits. RMSEs in the “L”
condition were 0.16 for chord-based and 0.21 fortased fits. The magnitudes of all
numbers were lower than in the ratings task, dukdstandardized dissimilarity scores in
the same/different task being ratios of “differer@sponses out of one, rather than ratings
out of nine. RMSESs have no inherent units and @emagnitude from the format of the
data. Again, in this task, participants showedrgjrevidence of awareness of the
circularity of the feature dimensions.
Tests for Tversky Violations

Recall that triangle inequalities were detectethepairwise ratings task. As in that
task, the same/different task again included 56@reént combinations of three objects
among the 16 objects in each condition, despitalifferent answer format. Out of all
triplets in group data, zero inequalities were fbfor the square condition, and zero were
also found across individual data. Fifteen inedigesliwere found for the “L” condition
group data—in other words, fifteen of the triplefbjects had pairwise ratings that could
not form any geometrically possible triangle, do®mhe leg being longer than the sum of
the other two legs. Across all individual datahe tL” condition, there were 901 triangle
inequalities (out of 5,600 triplets). These resaitgch those of the ratings task, with no
inequalities for the square condition, and inedigalin a moderate portion of triplets for
the “L” condition.

Group data in this task showed two violations ofimility in the square condition

and none in the “L” condition. Individual data otal showed 12 violations in the square
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condition across all trials of all subjects (5,8@tl) and 50 violations in the “L” condition
(out of 7,400 trials). This is a lower proportiohnoinimality violations in either condition
than in the ratings task. Violations of Cartesiasusmptions still suggest, however, that
judgments in the same/different task were not dégetupon or consistent with an
unmodified Cartesian feature space.
Neighborhood Density Analysis

Neighborhood densities correlated with differeneanvgen predicted and observed
similarity judgments about as strongly as in thievgae ratings task. Neighborhood
density for each object was the number of neiglmgoobjects immediately adjacent to that
object vertically, horizontally, or diagonally inflat conception of feature space for each
condition. Density of a pair was the sum of thegilees of the two objects. This was
correlated with the difference between the obsegredp dissimilarity rating for that pair
and the predicted dissimilarity using the besinfittdistance measure (in this case, chord
city block distance). Neighborhood density and olxse minus predicted difference
correlated at r = 0.117 for the square conditioth ian 0.276 for the “L” condition. Both
correlations were significant. This is consisteithwdenser regions of feature space having
exaggerated dissimilarity scores as if they weregmually expanded compared to sparse
regions of feature space.
Alignability Analysis

Alignability effects were moderately strong in tkesk. Non-alignment is the
predicted distance between two objects along afeaimension for whichever feature
dimension is most similar between them, i.e., @ssér of the two distances along color
and shape dimensions between a pair of objectierBifces between predicted and

observed similarity judgments were the same asameighborhood density test. Non-
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alignment correlated with differences in the squ@medition at r = 0.114, and at r = 0.343
in the “L” condition. Positive correlations mearathpairs which align less (greater non-
alignment) have exaggerated dissimilarities congarevell aligned objects. These
correlations were many times stronger and oppesitirection to both those from the
pairwise ratings task and predictions from priteriture (Gentner, 1983).
Discussion

As expected, the pairwise same/different task pleimixed results in terms of
matching the findings of the pairwise ratings tagkangle inequalities, minimality
violations, neighborhood density effects, andtfitehord-based distance measures in
circular dimensions were consistent between tadksS results were somewhat consistent,
still showing good evidence of feature-comparisasda judgments, but less strongly than
in the ratings task. The shape bias remained ifiLtheondition, but the attentional bias
flipped to a color bias in the square condition paned to the ratings task. Regardless of
direction of attentional modulation, however, mg@ayticipants in both tasks were still
prone to judging similarity along only one dimemsgtt a time even when two are available
and easily discernible. A greater number of pgréinis overall showed strong attentional
bias MDS solutions. Solutions were generally noiai@ less organized, although this is
likely due in large part to the lower statisticalger of the task, and to the fact that
participants were trying to answer items correatiigich, if successful, would result in
solutions that conflict with traditional featuremaparison predictions (Figure 17).

Alignment effects reversed in direction and inceshs magnitude compared to the
pairwise ratings task. This result representednaptete break from the ratings task and
ruled out alignability effects as task-generalgarposes of this project. The reason for the

reversal is unclear—alignability is not traditiolyalested using stimuli like these or flat
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rating type responses. Degree of alignability magome unstable or ambiguous in
comparisons with only two simple dimensions, sinoe well aligned stimuli are can only
be defined along one dimension while affecting mégts through the other. Regardless,
this behavioral effect’s reversal indicates it @ an ideal target for initial modeling.

The tendency to sometimes collapse across onedéeantirely and respond along
the other (clustering patterns) is an MDS patteat $eems so far to be common to
similarity judgments across tasks and which haaraqularly strong effect, despite a
variable direction of effect. Attentional modulation the “L” conditions, in particular,
seems to affect MDS solutions almost as much dsrie@omparison itself.

It is especially noteworthy that several testedlamty judgment behaviors
persisted in the same/different task despite tbetfeat unlike in the open-ended ratings
task, these behavioksad to wrong answers. The instructions for the same/different task
indicate a rule for similarity judgments that demsisymmetry across dimensions, that
does not tolerate neighborhood density warping,taatidoes not even reinforce every
aspect of basic Cartesian-type feature comparBloowing any of these similarity
judgment behavioral patterns in this task could gassibly lower accuracy in comparison
to an attentionally balanced treatment of both disiens that ignored neighborhood
density, etc. The persistence of almost every behaxcept alignability effects despite the
consequences of decreased accuracy in a taskeeiibéck after every trial is impressive
evidence of task-generality.

Overall, results of the two experiments so far sjgeveral ways in which
similarity judgments are consistent across theifipeof the task in which the judgments
are made. The final task, covered in the next @rafasted the opposite extreme of task

characteristics from the same/different task (Tdbl&Vhereas the same/different task is
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fast and discourages any similarity judgment past@side from the instructed correct
answer, spatial arrangement tasks are slow, datiker and open-ended. Spatial

arrangement therefore offers a stringent testaik-tgenerality compared to the

same/different task.
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CHAPTER 5

EXPERIMENT 3 — SpAM

SpAM is a method of collecting similarity judgmeistween many objects at once, using
space as a metaphor for similarity. Figure 6 demdfrial of SpAM in progress.
Participants were given 16 objects at once for exgerimental condition (square and

“L”) arranged on the sides of a computer screemyTheely moved all of the objects into a
central workspace so that distances between eacbgpeesponded to similarity, with

more similar objects closer together.

SpAM was developed by Goldstone (1994b) to be ratireient than pairwise
comparisons. Every object a participant places #feesecond one implies multiple
similarity judgments at once, since it has a distatio every other object already placed in
the workspace. For example, the ninth item planeiworkspace implies eight similarity
judgments at once, since it has a distance to @ftie other eight items already placed.
As many similarity judgments are implied by 16 abjelacements in SpAM as by 136
pairwise trials.

The characteristics of SpAM are dramatically deferthan the pairwise ratings
task and especially differ from the fast-paced ddifierent task. In general, SpAM allows
for relatively high participant awareness of thatext and consequences of every
similarity judgment compared to the other two tasksl it encourages slow, intentional,
structured similarity judgments. SpAM also elimesfny need to rely on memory of the
features of a stimulus set as a whole or to relynemories of previous similarity
judgments earlier in the experiment. This is beealkplacements made during the task

are visibly apparent to the participant in the vapdce in front of them at all times. For the
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same reason, relationships between sets of olgeetsasier to spot than in pairwise tasks
and therefore have a better chance to influende&jpants’ actions.

In addition, every action in SpAM encourages broadasideration of the full set
than in pairwise tasks, because each placememhbi@simmediate implications than in
the pairwise tasks—moving the ninth item impliggh¢idistances to other already-placed
objects at once, and participants were explicititriucted to consider these multiple
relationships. Although some participants may hguered these instructions, as a group
they showed evidence of taking longer to think al8pAM actions, of considering
context more, and of employing deeper strategasrs of individual participant
placements’ organization did not classify any patterns as indistinguishable; time spent per
object placement was longer than pairwise trial453econds per placement versus 0.84
and 2.57 seconds per trial in samefddiit and ratings pairwise tasks); and in several exit
debriefings, participants reported explicit logi@d'strategy” in their set of placements,
unlike in the other two tasks.

SpAM has the unique property of forcing all judgnseto fit a Cartesian feature
space, which means that SpAM has a more constragtenf possible responses than
pairwise tasks. This constraint also makes italiffito test some violations of Cartesian
feature space. For example, triangle inequalitiesrapossible in SpAM for any given
individual, because every triplet of objects mustif a literal geometric triangle in the

spatial workspace.

88

www.manaraa.com



Methods
Participants

Twenty-three participants were recruited from tbelpf an introductory
psychology course in a Midwestern town. One pardist was dropped for failing to move
any of the stimuli from their starting positionsrishg the task.

Stimuli

The same set of stimuli was used as in the twoiguevasks, and participants were
assigned to the same square and “L” conditionga #sa prior experiments with the same
16-item subsets of stimuli. Participants saw albBfects in an introductory phase that
matched that of the two pairwise tasks. Participdmen saw each of the 16 objects for
their condition once, simultaneously, in a singb&A®! trial. In SpAM, all stimuli are
presented at once, and it is the nature of thetteslkall object pair relationships are judged
with a single pattern of placements. Thus, mora thee trial was unnecessary. More than
one SpAM trial would also have included identidahsili, and many participants would
likely have noticed this and simply repeated tipeavious placements.

The initial starting positions of the stimuli alotige sides of the SpAM workspace
were randomized per participant into two vertical/s of eight objects. Order of initial
object display positions did not significantly aglate with final placement position or
average distances to other objects in final placepesitions.

Procedure

The computer station, seat position, stimulus sind, pre-exposure phase were the
same as in the previous two tasks. After pre-exogqarticipants were instructed to move
objects into positions such that more similar otg@eere placed closer together and more

dissimilar objects were placed further apart. Bgrdints were explicitly told not to pay
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attention to pairs in isolation, “All distances ttesit Please do NOT just consider two
objects together and then ignore the distance thmse objects to all the other ones in the
box.”

Participants were then given a workspace withlhaoks of eight scrambled
objects along the sides of the screen. Participdmaigged objects with their mouse until
satisfied with object positions. They could re-piosi objects as many times as desired.
Participants then hit any key on the keyboard twicedicate completion.

Analysis

Data from SpAM took the form of pixel distancesvibetn each pair of final object
placement positions in the workspace. City blockatice was used as the method of
measuring pairwise pixel distances, for the sarasam city-block distance was used in
MDS analysis, circular dimension awareness analgsid elsewhere in this project: the
dimensions of color hue and shape are separablthaadndicate the appropriateness of
city block distance measurements (Shepard, 1988sd dissimilarity judgments were
then standardized by scaling each participants®dce judgments such that each
participant’s average pixel distance across paas @qual. Analysis then followed the
same pattern of tests as in the previous two tagks,some modifications.

Individual MDS analyses were dropped from analysiSpAM and replaced by
analysis of scaled final placement positions. Tingpse of MDS is to fit objects into a
Cartesian geometric space in a way that matchesrdiarity input as closely as possible.
Since Cartesian object placements are already n@yda SpAM, an MDS analysis at the
individual level would be redundant and could adthing to analysis other than potential
error. Instead, participants’ raw placement pasiditted the role of individual MDS

solutions, and were subjected to the same anglystedures as individual MDS solutions
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were in the prior two studies. This included theaedhuman ratings of organization of each
individual “MDS result.” When rating SpAM task paipants’ placements, raters were
simply given the actual placements from SpAM, laspnted graphically the same way as
in the previous two experiments, as if they were3M@sults. Raters were not aware of this
underlying difference between data sources betwasks (they were not in fact aware of
any specific differences between tasks at @thup MDS solutions proceeded as in the
prior two studies, because after averaging acr@ss/nmdividuals, pairwise dissimilarities
are no longer guaranteed to perfectly fit into at€aan space, and thus an MDS algorithm
is not redundant for averaged group SpAM data.

Triangle inequalities and violations of minimaliyere dropped from analysis in
SpAM, due to being impossible a priori to observa itask that is constrained to a
Cartesian answer space. These analyses weragliltied in the project overall (in the
previous two tasks), because the enforced Cartesiastraint on SpAM is not itself a
naturalistic task characteristic in most real $feiations. Since | found both effects in the
first two pairwise experiments where they are guedio observe and where the constraints
on these effects in particular are more naturalisttonsider these behavioral effects to
already be sufficiently task-general to serve asmaational modeling targets.

Results
Group Multidimensional Scaling

Group MDS analysis used the standardized inputhvim this case was the same
as raw behavioral placement distances, scaledjical @verage distances as described
above. As the scree plot from chapter 3 indicated, a timethsional fit was most
appropriate for SpAM group MDS, as it was for tmevpous two tasks. The MDS group

solutions are shown in Figure 19. The square cmmdgolution resembles that of the
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pairwise ratings task: is a grid-like shape witmsmoisy local confusion between
neighboring feature values. The “L” condition shaawsght angle between arms of the

“L,” unlike the more obtuse warped angles in thstfiask. The solution looks more like a
cross than an “L” due to some confusion in the ooddeature values in the shape
dimension (red lines). In other words, the shagéseoshape-matching arm of the “L”
were treated as if they were in the middle of thepe dimension rather than on one end of
it. Color values show similar confusion of ordeeitler condition group solution suggests
any obvious overall attentional bias to either disien.

Square Condition 3% 3001

200+

“L" Condition
100}

50t 100}

100+
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Figure 19: Group MDS solutions for SpAM. The square condition shows a noisy grid shape with
minor to moderate local confusion of the order of feature values. The “L” condition shows a less
noisy solution, but with more severe confusion of feature value order. The two feature dimensions
appear as almost entirely orthogonal, unlike in the pairwise ratings task. No group attentional bias
is clear from the group MDS solutions.

Individual Placement Analysis

Instead of individual MDS solutions, participardg’ect placements in the SpAM
workspace were analyzed as if MDS solutions. SBm&M constrains answers to a two-
dimensional, Cartesian answer space, just likecadimensional MDS solution, MDS

analysis would be redundant for individual SpAMalalust like the individual MDS
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solutions of the pairwise tasks, raters coded tplrements of objects from SpAM for
their level of organization, but were not made aafrthe difference between SpAM and
the pairwise tasks (SpAM placements were presentedaters as if MDS solutions
graphically). Raters did not unanimously agree mynsangle participant’s solution as
deserving the lowest possible organization ratingrefore no participant’s data was
dropped as had been the case in the previous tperiexents. This is not surprising, since
participants could view their entire set of simtlajudgments on screen at one time, unlike
in the other tasks.

Patterns of individual placements trended moreatdvieature-comparison-driven
patterns than in previous experiments. Some ppatnts still also showed highly
attentionally modulated patterns of placement buiel than in pairwise tasks. Figure 20
shows two individual patterns most closely matctimgggroup results. The square
condition individual, like in the group solutiorh@wvs mostly grid-like placements with
some minor local confusion of feature value ordiée “L” condition individual pattern
shown here is not the most organized pattern segythe one closest to the appearance of
the group solution—specifically, it shows ratinbattplace differences along each feature
dimension mostly at right angles, but which confuge order of feature values liberally
along both dimensions. Some participants indivigustitowed much more organized
solutions. Figure 21 depicts the placements ofdividual in the “L” condition who
placed objects almost perfectly in line with thedtictions of a Cartesian model using only

feature-comparison methods of similarity judgment.
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Figure 20: Individual solutions for SpAM. The square condition participant shows a grid like the
group solution, but with one row swapped along part of its length. This is more orderly but in the
same trend as the group results. The “L” condition participant fits the group “L” pattern of mostly
orthogonal feature dimensions, little obvious attentional bias, and many cases of confused order

of feature values.

Degree of attentional modulation was tested quetivély, as in the previous two
tasks. In the square condition, the geometric mato was 0.99 red length : green length
(geometric standard deviation 3.22), representmmdimension bias. The most extreme
bias in a single participant in the square conditi@s a 10.31 ratio biased toward color. In
the “L” condition, geometric mean bias was 0.5%0fgetric standard deviatiogh68), also

biased toward shape, and the most extreme indiMidtia was 0.02 toward shape (another

participant was biased at 3.92 toward color).
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Figure 21: A more orderly participant. This participant was from the “L” condition.
Circular Dimension Awareness Test

This test was performed the same as in the paitasies. Results were mixed.
RMSEs in the square condition were 624 for chorskdaand 520 for arc-based fits, the
first case of a closer fit to an arc-based distaneasure. RMSEs in the “L” condition were
100 for chord-based and 107 for arc-based fitschmadg the previous two tasks. This task
did not confirm that participants were aware of ¢ireular nature of the dimension in the
square condition, but confirmed awareness of thtke “L” condition. The arc-based fit in
the square condition does not contradict circuliaretision awareness. An “arc” based fit
could result from perception of distances acrosararof a circular dimension, or it could
result from perception of straight line distancesfdéhe dimension were non-circular. Still,
chord-based distance measures were eliminatedesal modeling target, at least for
square condition stimuli. | will still report regsilof a test of the model on arc-based and
chord-based distance measures, but the ideal ieswdt completely clear from these

empirical results.
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Neighborhood Density Analysis

Neighborhood density effects were consistent withgrevious two tasks. Summed
neighborhood densities of the objects in a pairetated with the difference between
predicted and observed dissimilarity of that paoderately and positively in both
conditions. In the square condition, density anetdjence correlated at r = 0.180, and in
the “L” condition it correlated at r = 0.343. Bathrrelations were significant. Again, this
is consistent with denser regions of feature spavéng exaggerated dissimilarity ratings
as compared to equivalent pairs in sparser regibfeature space.
Alignability Analysis

Effects were again inconsistent relative to pregitasks. Non-alignment between
objects in pairs (minimum distance along either dineension between objects) correlated
with the difference between predicted and obsedigsimilarity ratings at r = 0.119 for the
square condition, and at r = -0.121 for the “L” ddgion. These results imply that as
objects become more alignable, participants in Spislggerate their similarities in the
square condition, but exaggerate their differemeceise “L” condition. This is different
from the results of either the pairwise ratingk @mth very weak, negative correlations)
or the pairwise same/different task (both weak/maige positive correlations).

Discussion

SpAM is at the opposite extreme in object simijgudgment task characteristics
compared to the pairwise same/different task (Tahl# is slower, more deliberate, and
rich in context compared to the pairwise tasksaddition, SpAM provides persistent
perceptual feedback about similarity judgment pati¢hat the pairwise tasks lack.
Because of this, SpAM was expected to rule out Soehavioral similarity effects as task-

general. This was the case for the chord-basedndistmeasure fitting best in the square
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condition. SpAM also showed no disorganized indrgidudgment patterns like the
previous two tasks, although this trend was nobdeting target. SpAM further
disconfirmed alignability effects as a task-genbetiavioral pattern. This task also was
unable by definition to show triangle inequalit@sviolations of minimality, which as
previously discussed, is taken as a reason to fgaseemphasis on these behavioral
patterns as modeling targets but not to rule thetobconsideration completely.

SpAM also reinforced several effects as task-ggneowever. Table 2 summarizes
the results of all three tasks. In each taskiangtunderlying influence of feature value
comparison was detected. Even when some indivitkkighboring feature values were
confused in order, the overall patterns of judgmeahibwed feature dimensions being
treated separately and most values being corrdigiynguished as separate and related to
overall similarity judgments. The “L” condition gip MDS results in the pairwise ratings
task showed an obtuse angle for the “L” conditioat implies some degree of conflation
between the two feature dimensions. However, ditoesswithin each individual arm of
the “L” were still treated as orthogonal, and thverall angle of the “L joint” was still less
than 180 degrees, suggesting that differences ettt feature dimensions were still
appreciated as well. Feature comparison was expactess all three tasks, since it is
common to all prior models of similarity judgments.

Attentional modulation of whole dimensions waseaslied across all conditions of
all three tasks, most notably in individual MDS lgses. The tendency for some
participants to consider only one feature dimensioa time when making decisions is a
consistent theme across all three diverse testsrofarity judgments, and is a known
behavioral pattern in similarity judgments from prior research (Shepard, 1964; Treisman &

Gelade, 1980).
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Neighborhood density showed moderate but consisten¢lations with an
exaggeration of dissimilarity over all three task#hen several objects in a set take up a
region of feature space near one another, perceptidissimilarity is exaggerated beyond
the amount implied by the basic number of feattepsbetween each of the objects of a
pair. This is also consistent with findings in therature (Krumhansl, 1978.ove, Medin,

& Gureckis, 2003)

A final factor that was implicit in the discussiohall three tasks but is important to
explicitly state with regard to the neural modethiat there were several clear differences
between the square and the “L” conditions acrasisstal hese differences extended beyond
merely the feature value patterns of stimuli infreagndition in feature space. The two
conditions showed differing levels of minimalityolations and triangle inequalities,
different types of non-feature-comparison effentMDS results, different biases on
average toward attention to one feature dimensi@mother, and so on. Especially
important is that these differences occurred emghe pairwise task, where the
experimental condition was only apparent in thetexnof a range of trials. This implies
that participants were remembering the objectsanddgments across many trials. For a
neural model, this implies the need for a long tetemory system to keep track of

patterns of stimuli, pairs, and/or judgments ovreet

98

www.manaraa.com



Table 2: A summary of empirical results from Experiments 1-3.

Pairwise Ratings Pairwise Same/Different Spatial Arrangemer

Method
Test Square “L” Square “Lr Square “L”
Somewha
Systematic, noisy,
some inconsistent Noisy, slight Noisy, no
curvature, noSystematic, curvature, nocurvature  curvature, ndSystematic,
clear some strong matching  clear no curvature

dimension curvature, dimension ratings task, dimension some shape
bias, some shape bias, bias, some shape bias, bias, severalbias, many

value valuesin  value several valuevalue value
Group MDS confusion  order confusion  confusions confusions confusions

Two

disorganized

participants, No One One No No

average disorganizeddisorganizeddisorganizeddisorganizeddisorganized

shape bias participants, participant, participant, participants, participants,

(0.39 ratio average average coloaverage no dimensiolaverage
Individual  color : shapeshape bias bias (1.84 shape bias bias (0.99 shape bias
MDS influence) (0.38 ratio) ratio) (0.71 ratio) ratio) (0.55 ratio)

Circular 1.40 chord 0.87 chord 0.20 chord 0.16 chord 624 chord 100 chord
Dimension RMSE 1.79 RMSE 1.70 RMSE 0.23 RMSE 0.21 RMSE 520 RMSE 107
Measure arc RMSE arc RMSE arc RMSE arc RMSE arc RMSE arc RMSE

Triangle 0% of 2.7% of 0% of 2.7% of not not
Inequalities triplets triplets triplets triplets applicable applicable
Violations of 2.6% of 0.6% of 0.2% of 0.7% of not not
Minimality trials trials trials trials applicable applicable
Neighborhoot

Density r=0.248 r=0.288 r=0.117 r=0.276  0.180 r=0.343

Alignability r=-0.07 r=-0.06 r=0.114 r=034 r=0.119 r=-0.121
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CHAPTER 6

A DYNAMIC NEURAL FIELD MODEL OF SIMILARITY

A central goal of this dissertation is to develdpMF model that captures a broad set of
similarity judgment behaviors with an emphasisloatask-general behaviors observed in
Chapters 3-5. In this chapter, | introduce the BiNfilarity judgment model in detall,
including its architecture and the process by witishmulates similarity judgment tasks. |
demonstrate the model’s ability to replicate eaicthe behaviors that were task-general
across my three empirical tasks: an influence afiuiee comparison, attentional modulation
by dimension, and a sensitivity to neighborhoodsitgnThe model also captured
meaningful differences between square and “L” expental conditions, a task-general
pattern that arose from the empirical analyses.

The model also shows violations of minimality, trgde inequalities, and a best fit
to chord-based feature distance for circular featlimensions. These behaviors were
observed frequently in Experiments 1-3 but not ghtmbe entirely task-general.

The DNF model presented here uses a neural arthigebat does not consume
exponential resource usage as feature dimensionality increases; it captures the real time
neural process dynamics of behavioral tasks as they unfold; and it theoretically relates the
process of similarity judgments to related processerisual cognition and categorization

that have been the focus of previous DNF models.
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Architecture

The DNF model consists of a number of neural fieldsand 2-dimensional fields
of organized neural units. There are two featuneedisions—shape and color for this
project’s stimuli—and a spatial dimension represgnthe spatial position of objects in the
task space. Fields were 50 units in size along dambnsion, with the exception of a
single one-dimensional decision field that was 201s in size.

Each individual unit is receptive to values alohg tlimension of the field to which
it belongs, with maximal receptivity at a partiawalue per dimension. Figure 22 shows a
two-dimensional example field and the receptividfa a single neural unit within it. This
unit is in a two-dimensional color by space fiefdlas most receptive to “green” and “left”
feature and space values in that field (see Gausseeptive fields along each axis). A unit
next to this unit might be maximally receptive tefy slightly yellow-green”, and “very
slightly further to the left,” and so on across tiedd in either dimension. Every unit is
sensitive to values other than its maximum ‘preférvalue(s), but decreasingly so across
a dimension (see black receptive curves, top dhdfiéigure). How quickly this
sensitivity falls across units follows a Gaussiarve, with a width controlled by model
parameters. Along the color dimension, for examible neural unit in Figure 22 is
maximally receptive to green stimuli, but will stéspond weakly to stimuli as far along

the color dimension as orange or cyan.
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Figure 22: An abstract unit in a neural field.

Figure 23 shows a set of fields and associatedaticn values from a portion of
the DNF model. The large square field is a neusalal field where objects first enter the
model. As in Figure 22, the square visual fieldFigure 23 is organized by the dimensions
of retinal space (horizontal axis) and a featureatision, in this case color (vertical axis).
The colors seen in the figure represent the lededstivation of individual units in the
field. The mottled blue background is the restiengl of the field (with noise). The circles
of light blue to orange are “peaks” of activatiarhere neural units are being driven by
perceptual input, in this case from two object# ahd B. The horizontal position of each
peak represents where that object falls on a siiegplone-dimensional retina, and the
vertical position of each peak represents the aafldhat object. Objects A and B are
therefore appearing at different locations in spmoe have different colors.

Input to the model assumes that objects have éeaittre values corresponding to

particular units in the visual neural field. Theotyeaks of activation in Figure 23 do not
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appear as single units of activity, however. Thibecause many nearby units have
receptive fields that overlap the input valueshvdiminishing strength further from the

input location and color.

L A . A
Retial Space Attention

Attention, Color

Visual Field

Figure 23: Visual and attentional fields in the DNF model.

Activation in the model passes between fields acsbsred dimensions. The two
white boxes in Figure 23 (C and D) depict one-disi@mal attention fields. Activity in
these fields corresponds to degree of attentiataiéd to either a particular color (in the
color attention field) or a particular positionspace (in the space attention field). Blue
lines indicate the excitation levels of the neuwnaits. The red lines represent a threshold of
activation—units that are above this threshold sartguts to any fields they are connected
to.10

The visual and attention fields are interactingwahe another in Figure 23. Each

unit in the attentional fields is receiving sumnueplut from the row or column of units in

9 The two-dimensional visual field works the same wéth regard to thresholds of
activation, but the activity and output are notbaisualized in two-dimensional fields in the
figures, only the activity level.
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the visual field next to it, and each attentionait is also sending back its own output
distributed to every unit along those same rowsahdmns. Each unit in the color
attention field is receiving maximum input fromaw of units in the visual field, and each
unit in the retinal space attention field is re@ggvinput from a column of units in the
visual field. These activation projections decrestsength over distance, according to a
Gaussian profile.

All fields in the model—as shown in Figure 23 antbsequent figures—also feed
into themselves. Figure 24 shows the two typegefdtback a field receives from itself.
Self-feedback is only sent for above-thresholdvatiton, just like output to other fields.
When threshold activation is reached, a field sesmifsexcitation to itself (green, Figure
24), and it also sendlmoader butweaker pattern of lateral inhibition to itself (red, Figu
24). The result of both excitation and inhibiti@géther is a “Mexican hat” shaped pattern
of influence (black, Figure 24), with heightened\ation at the site of the original
activity, but a trough of inhibition surroundingatharea. This pattern of feedback allows
for stable, persistent neural activation. The sglfitation can maintain the pattern of
activity, while the lateral inhibition stops thetfgn from growing out of control. The
exact strength and shape of the excitation vergubition can be tuned to make a field
self-sustaining (with strong neural interactionspomarily input-driven (with weak neural

interactions).
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Figure 24: Self-feedback unit dynamics.

The final type of input to a regular field is gldlx@hibition (not directly shown in
figures). When any part of a field reaches thresialels of activation, it can feed back
inhibition toall of its own units regardless of their receptivédse Global inhibition is
used for fields that require competitive peak fatiora Attentional fields are examples of
fields with strong global inhibition. Only one feaé value or spatial location is typically
attended at once, and this is achieved with gloitabition. Once one peak forms,
representing attention to a feature or locatioabgl inhibition suppresses any other peaks
from forming. Local self-excitation, however, cdiil snaintain the first peak despite its
own global inhibition. Thus, the field functions adirst-winner-takes-all competitive
system. The first object attended will suppressnditbn to any other objects until the
attention field is somehow destabilized (via owtsithibition, removal of input, etc.).

Returning to Figure 23, we can now understanduhegnge of dynamics
displayed. Input from the visual system outsiderttglel is driving two peaks in the visual
field, representing two objects, A and B. One & dijects is currently being attended (A).
This object was likely attended due to random tlatibns: background noise pushed its

peak’s activity slightly higher than the other atje peak at first. Since both peaks in the
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visual field are driving both attention fields atresponding values (green arrows), this
slight boost would have allowed one object to reattdntional threshold first. The peaks at
that location and color in the attentional fieldern won the attentional competition and
suppressed any other peaks from forming. Reveibgrattivity between space and color
synchronize the attentional fields to both attemthe same object if they did not do so
originally. The input from the un-attended objdg} (o the attentional fields is also visible,
but is being pushed below threshold by global iitinib (E). The attentional fields are also
connected positively back to the visual fields érarrows). This is causing the attended
object’s peak at A in the visual field to becom®igyer and redder—remember, only
above-threshold activation sends output, so thpregped object at B is not strengthened.
Full Model

Figure 25 depicts the full DNF model of object darty judgments. Figure 26
shows the model with all connections between modeiponents indicated. Some parts of
the model shown in Figure 25 are familiar from ithteoductory example above. The same
visual field is visible at A(color), and the sametobjects can be seen at B(color) and
C(color). The same attentional fields are alsdolésat D(color) and at E. There is now
another visual field and attentional field below first, at A(shape). There are still only
two objects, however: points B(shape) and C(shegeksent the same two objects as
B(color) and C(color), but the shape values oféha&gects are indicated in the new visual
shape field. The purpose of two rows of fieldisdpresent the stimuli’s two features. In
general, any field in the model that is receptivae feature dimension would be replicated
once in the model for every relevant feature dirmmdmportantly, this adds neural
resources linearly, but not exponentially, for hdjimensional object representations. Since

my stimuli from Experiments 1-3 had two feature dmsions, | have two rows of feature
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fields. Each object is thus represented as twogdadth at the same retinal spatial location

but at different feature values. In Figure 25, tile visible objects match in shape, but

differ in color.
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Figure 25: The full DNF model.
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Figure 26: The full DNF model with connections.

The field seen at F in Figure 25 is an “inhibitiofireturn” (IOR) field. Unlike
attention, the IOR field has weak global inhibitimd can sustain several peaks at once.
Peaks form here partially based on input from tilseal field, but primarily due to input
from special “peak detector” nodes. These are lithas small points to the left of the
IOR field box in the figures, though they are nattpf the IOR field. Peak detectors fire
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when an object’s features have been consolidateaiking memory. Once this occurs,
the baseline level of the IOR field is raised, argkak builds in the IOR field at the
location that is the current focus of attentionisTIOR peak actively suppresses the
associated peak in the spatial attention fiel&asihg the model from the current focus of
attention. IOR, thus, keeps attention shifting @éavrstimuli as soon as stimuli are
consolidated in working memory.

At position G in Figure 25, a feature (in this caséor) working memory field is
shown. This field stores the colors of recentlynseljects. In the DNF model of
Schneegans, et al. (in press), objects are repgessana two-dimensional color by space
working memory field that binds features togettmethie spatial frame of a scene. This
avoids confusion if, for instance, the system leaetmember different objects of the same
color. For the current model, | used a simplifiee @imensional working memory because
the model only had to compare two objects on amgrgtrial. With the simplified model,
similarity judgments occur after one object is stbin working memory and the model
shifts attention to the second object to engagedomparison of the two items. The
working memory fields are weakly self-sustainingpori%hg memory consolidation in
Figure 25 along the shape dimension has occurstdrfthan in the color dimension, due
to the objects sharing a shape and sending strooggntapping activity across the
attended value of the shape fields.

A one-dimensional color contrast field is seepamel H. A contrast field detects
novelty. As indicated by arrows in Figure 26, tlodoc contrast field receives excitatory
input from the visual field and color attentionldis. Thus, currently attended objects in the
visual field strongly excite the contrast field.eftontrast field is inhibited, however, by

working memory, inhibiting peaks for already-stofedture values. The result is that the
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contrast field only builds peaks temporarily f@w feature values, seen but not yet held in
memory. As soon as objects with those featurefulyestored in memory, the novelty
activation is suppressed. At point | in Figure @Bs can be seen in action: since the two
objects overlap in shape, the working memory pea fthe first attended object has
already destroyed any contrast peak in the shapergion. There are no longer any novel
shapes in the visual field.

The final fields in Figure 25 not specific to slamity judgment are long term
memory fields, such as the one in panel J. Thesdsfshow only a red line. They do not
operate under the same dynamics as the other rieldal Long term memory fields
operate under principles of Hebbian learning, gatlgibuilding up representational
strength over many trials, which then decays evererslowly if not reinforced. In Figure
25, the long term memory activity shown had alreladijt up over 40 trials before the two
objects in this trial were presented. Long term memeceives input only from above-
threshold units in the working memory fields. lbpides feedback exclusively to the
working memory fields. There are no Gaussian reeeffields to the connections between
long term and workig memory fields; the relationship is 1:1 between exactly matching
units only. Long term memory in this model ampkf@ny working memory signal that
occurs at a spot with frequent recent working menaativity.

Similarity Components. Thus far, all fields described are common to theFDN
model proposed by Schneegans et al. that was asmgbture processes of visual working
memory and change detection. The remaining nod#éields are those specific to
similarity judgment in the current model.

Figure 25 shows the addition of a few single uodiés and a one-dimensional field

for capturing explicit similarity judgments in tineodel, at K, L, M, and N. At the core of
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the similarity portion of the model are the singtet “Sim[ilarity]” (K) node and
“Dissim([ilarity]” (L) node. These are driven by tisesm of all activation in the fields below
them. The dissimilarity node is driven by summetivity over the feature contrast fields.
Contrast fields detect novelty, so whenever theyhaghly active, the currently attended
object must be different than anything alreadyexton working memory.

The similarity node is driven by summed activatidrthe working memory fields.
When objects in a scene match in a feature, tlotivity overlaps and is exaggerated in
working memory. This is the same effect that caubedshape memory field in Figure 25
to form a peak faster than the color memory fi@ldmmed working memory activity
therefore serves as a relative indicator of sintylatrength, since more matching features
adds to more total activity in feature working meynfields.

The similarity and dissimilarity nodes themselvesd into opposite sides of the
“similarity decision” field (M), which is shown heras it would be in a pairwise ratings 1-9
choice task. Dissimilarity projects a very broadlpef activation to the left side of the
decision field, and similarity projects a broad lpeé&activation to the right. Depending on
the nodes’ relative strengths, anywhere from omkterthe middle to the other end of the
decision field will receive the maximal input. Stlireshold peaks exist all along the scale
field, representing 1-9 similarity ratings (driven instructions or viewing a ratings scale
on a monitor, for example). Depending which parthef field receives the most activation,
any one of these sub-threshold peaks will reaastiold first. The decision field has high
global inhibition, so possible answer responsespatenuntil only one wins and self-
excites strongly enough to trigger a numerical irity judgment.

This decision competition cannot happen too soowgver. The contrast and

working memory fields begin to become active viguinfrom the first attended object, so
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without any additional control, the decision fieduld decide immediately after attending
to the first item in a trial. To avoid this, theactkeon field is kept at a low resting level, with
similarity and dissimilarity signals insufficienylbhemselves to push it to a decision. In
addition, the decision field also requires inponfra “gate” node (N in Figure 25). This
gate node receives input from the IOR field andanfispatial attention, and requires input
from both of these fields to activate the gate naie trigger a decision. This means that
the model actively attends to the first object,smiates these features in working
memory, and then shifts attention to the secondabbj\t that point, the gate node is
engaged and the model is ready to compare thetelgad make a decision based upon the
activation of the similarity and dissimilarity nasle

The Remaining Time Course of a Pairwise Ratings Tal. At this point, all of the
fields and processes relevant to a single pairvaeisegs similarity judgment trial have
been described. Figures 27 and 28 show these gexcasafolding late in an example
experimental trial.

In Figure 27, the full working memory trace hasablished itself across both
feature dimensions, unlike in Figure 25 (A). Calmrking memory was slower to
establish, since colors did not match and thuslapexctivation along the color dimension,
unlike along the shape dimensions. The newly estad peak in working memory has
also suppressed the peak at the same color vathe tolor contrast field at Figure 27 B.
Moreover, the consolidation of an item into workimgmory along both feature
dimensions has triggered the peak detector systeinmdiated inhibition of return to the
first attended object (C), which has inhibited rataf attention to the spatial location of
that object (D). With attention broken to the fioktject, the system is beginning to attend

to the next object (E). The combined activity frtme IOR field and from attention to a
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new object (C and E) is almost enough to triggeinalarity judgment via activation of the
gate node (F). The decision field is rising higaed closer to threshold (G). Similarity and
dissimilarity signals have been feeding into thmilsirity and dissimilarity nodes at all
times, and the decision field is already slighilgsed toward the similarity side.

In Figure 28, the model has progressed furthery @ top few non-feature-
specific fields are shown here. The gate node &5)rfiow received enough activation from
IOR and spatial attention (C and D) for long enotabuild activation and push the
similarity decision field (B) to threshold. Respeasare competing through global
inhibition. The model appears to be favoring annaarof 7 out of 9 similarity for these
two objects (B). Note that as the model cyclesubloadditional time steps, eventually a
single rating will be selected via global competitin the decision field. The IOR field is
now inhibiting return of spatial attention to bathjects because they have both been
attended.

The 7 out of 9 rating is driven by strong activatto the similarity node due to the
overlapping features in shape projecting robusvaiibn to working memory. At the same
time, any contrast peaks were destroyed in shapering the dissimilarity signal. Some
dissimilarity signal persists, though, due to teaining contrast detection in color. The
model can also capture the subtler cageadial overlap between objects in a feature
dimension. If feature values are close but nottidah the working memory boost due to
overlap is weaker, and the destruction of confrakt peaks is only partial, due to the

Gaussian shape of interactions within and betwietafst
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Figure 27: The DNF model after peak detection. A full working memory trace has been established
for the first attended object, IOR has activated and suppressed spatial attention to the location of
the first item, and the system is beginning to attend to the second object.
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Figure 28: The DNF model at decision. Return of spatial attention is inhibited to both object
locations, and the gate node is driving a competition between possible ratings in the similarity
decision field.
Experimental Simulation
Pairwise Ratings Task
Figures 25-28 depict the entire process of a pagwatings trial in the DNF model.
The model simulates actual, individual participamtdeing given each trial that each
participant received, in the same order the pauditi experienced. Objects were positioned
at different coordinates along the color and stdipensions in the visual field according
to the original input feature values used in thestaiction of the stimulus feature space.
Each participant’s attentional bias toward eactheftwo feature dimensions was
also provided to the model. If, for example, a giparticipant was twice as influenced by
color differences in their similarity judgments thiay shape differences in individual MDS
analysis, then in the model, the influences ofwbeking memory and contrast shape fields
on the similarity and dissimilarity nodes (connens marked A in Figure 26) were reduced
by half, while the influences of the color field i Figure 26) were untouched. The
model used exact ratios of attentional bias betvieature dimensions from each human
participant’s personal MDS analyses to simulaté plaaticipant. All of these ratios for

individual participants are listed in Table 3 a #nd of this chapter.
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The model then fit the relative influence of thenssand different nodes on the
decision field (connections C versus D in Figurg Z&e strength of these connections
relative to one another was varied over nine sitrarla of each participant (all
combinations of three strengths each of connectibasd D in Figure 26), and the best fit
between model output and behavior was used for gaullated participant. This
accounted for individual participant differencesiases toward one end of the ratings
scale versus another, or different interpretatmnghat “similar” meant, such as a more
conjunctive versus disjunctive definition of sintitg. The best fitting weights of
connections to same and different nodes from msidallations of each participant are
listed in Table 3. Responses were recorded fomtheel as whichever response peak first
reached an activity level of 8, which was suffi¢ciemindicate a clear winner from global
inhibitory competition.

The model's other parameters were then tuned tiofibeserall performance over
the four simulated conditions—pairwise ratings squand “L” conditions and pairwise
same/different square and “L” conditions. A combioa of matching means and
correlations between empirical and model resulténfdividual trials was used to evaluate
the fit of different parameter sets. The same affidrdnt node weights were fitted
automatically per participant for every set of pagters tested, not only in the final
simulation. Only one set of model parameters wasl @i3r both conditions of both tasks.
The only variables between simulations over theselitions were the participant-specific
attentional biases, the participant-specific oafdrials matched by the model, and the
switch between nine and two output options in thesion field. The full set of best fitting
model parameters used for all conditions is pravideTable 4 at the end of this chapter.

Table 4 also indicates parameters changed fromeegfams, et al. (in press) in bold.
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Pairwise Same/Different Task

The pairwise same/different task was modeled irstiee way as the ratings task,
but with only two sub-threshold peaks in the siniiyedecision field at positions
corresponding to 1 and to 9 in the ratings taskes€éhiwo endpoints become “different”
and “same” responses, respectively. This was theabrange to the model architecture.
The model also received the appropriate trial oesher attentional biases of participants in
the same/different task while simulating this task.

The fact that the same/different experiment hadlgeactive correct answer is
ignored by the model. The distinction between disjive and conjunctive similarity rules
could be hard-coded into the model as a different badio of weights between similarity
and dissimilarity nodes into the decision fieldc@njunctive rule requires identical
matches to respond “same,” so this could involvenster projections from the
dissimilarity node. This would make a single diffiece strong enough to overwhelm the
system and force a “different” response, evenhieoteatures matched. A disjunctive rule
requires only one matching feature to respond “sastethe projections from the
similarity node could be stronger to push the denifield to a “Same” answer, even with
only one match’s input. | did not need to explicithplement these ratios based on
instructions, however, because this ratio was dyréeing freely fit by the model to
individual participants’ behavior.

SpAM

SpAM was not modeled in this dissertation. SpAMoilres sixteen objects instead
of two; constant switching between two different task spaces (the item bankslaad
placement workspace) instead of one; two relevant spatial dimensions per spatial field

instead of one; and a more complex, two-dimensional response format. All of these
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requirements are possible to meet in a future, g version of the DNF model that
integrates the scene representation model of Sghnseet al. (in press). Two task spaces
can be achieved with two different spatial feafigkls. This is an architecture that was
temporarily limited from the Schneegans, et al.doicker simulations but will be re-
introduced for capturing SpAM results. One fieldamizes object representations by
retinal space and feature, while the second fiejdmizes objects by scene or task
(allocentric) space and feature, regardless oftieent retinal view. The two spaces are
linked in DNF by transformations that representppiaceptive knowledge of body, head,
and eye position.

The two-dimensional workspace (for perception asponses) of SpAM can be
accommodated in DNF using three-dimensional sppaeesfeature fields. These fields
still use realistic numbers of neural units andoaict for both dimensions of retinal space
or SpAM workspace.

For the DNF model to maintain multiple objects &l requires larger fields and
different neural dynamics to allow for narrowertd¢aobject representations. The
dynamics of feature comparison’s impact on sintygrdgments would also need to
change from the pairwise task model. Feature cosgraitself as a dynamic between
perception, working memory, and long term memorylMaemain the same, but instead
of leading to decisions through “same” and “diffeifenodes, SpAM placements would
need to be decided in spatially organized fielde $chneegans, et al. (in press) model
included spatial working memory and spatial contfieéds analogous to the feature fields
in the present model. These were unnecessarymuilaing pairwise tasks, but in SpAM,
these would form the basis of object placementsiaas. While feature fields determine

the similarity of objects through overlap of feasyr spatial fields would similarly
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determine valid object locations by overlap of sddbcations. New placements directly
on top of existing objects are discouraged, butgai@nts nearby similar objects are
encouraged. This can be accomplished with a redefsesion of the “Mexican hat”
Gaussian field comparison shown in Figure 24. bt local, strong excitation added to
wide, weak inhibition, SpAM placements can dependocal, strong inhibition and wide,
weak excitation. An upside-down “Mexican hat” pattevould discourage placement of
objects on top of one another, but encourage plantof objects near one another.
Combined with feature comparison in the featurielfiethe two systems can satisfy the
rules of object placements in SpAM.
Results

Analyses for all simulated data were identicaldmi to the analyses run in the
experimental conditions, except with yoked modehgs substituted for human ratings on
a trial-by-trial basis. | review these results indually in this section, and a summary of all
modeling results is also provided in Table 5 atehd of this chapter.
Group Multidimensional Scaling

Figures 29 and 30 show 2x2 cell comparisons of\ielel and modeling group
MDS results. The left column of each figure is slqgare condition, and the right column
is the “L” condition. The top row of each figureastrs behavioral results, while the bottom
row shows modeling results. Figure 29 depicts pagwatings group MDS solutions, and
Figure 30 shows pairwise same/different group MDIBt&ons.

The fits by the model in all cases are very clastné corresponding behavioral
solutions. In both square conditions, the modeiggiles somewhat with achieving the
correct dimensional attentional bias. The ratingggase solution shows the more orderly fit,

and the same/different square solution shows the igorganized fit, including
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confusion between shape values, as in the human 8éEon. In the square conditions
of both tasks, the behavioral solution is less wigd, with one versus zero feature value
confusions in the ratings task and two versus eatufe value confusions in the
same/different task, but the relative organizabietween tasks is consistent between

behavior and modeling results.

Square Condition “L* Conditi
. Behavioral al I!el?avi-;ll':r

Square Condition . “L" Condition
Maodel

Figure 29: Ratings task MDS fits.
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Figure 30: Same / Different task MDS fits.

*L* Condition
Model

In the “L” condition, the modeling fits are clogerbehavioral results. The model
shows all of the key features of the behavioraltsoh in the ratings task: an attentional
shape bias, an obtuse angle to the “L” shape, and grganization otherwise for all
solution placements. The model also captures beta\differences when progressing to
the same/different “L” solution: higher disorgartina, less of an overall attentional bias,
and a greater number of feature value confusions.

Individual Multidimensional Scaling

Group MDS results may be artifacts of averagingl, @specially in the case of an
artificial model, this is an important possibility test. Overall, individual MDS solutions
fit corresponding behavioral data as well if notrenclosely than the group results. Figure
31 shows a representative selection of severaliohatl MDS solutions in the square
ratings condition. Other conditions fit similarbt the range of individual patterns is

easier to appreciate with examples from a singhelition and task.
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For almost every participant, the model capturds/idual MDS solution shape,
the correct attentional bias to individual featdmmensions, and even level of organization
of different subjects’ solutions. This last facteell-orderedness of solutions, is surprising.
An example can be seen in the distinction betwkerfitst and second rows of Figure 31.
This distinction must be the result of overall teatdimension bias (fed directly to the
model), same/different bias (the fitted parametar}he fact that the same random order of
trials was given to the model as presented to stgjBlone of these should obviously be

predictive of organization of similarity judgmerteerall.
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Feature Comparison

Both group and individual MDS solutions demonsttaemodel’s strength in
utilizing feature comparison as a foundation ositsilarity judgments. Feature
comparison is ubiquitous in behavioral patterns, @pturing this factor is a necessary
achievement of any similarity model. The neuralgesses that support feature comparison
in the DNF model are those involved in the peragpind memory representation of
objects across the visual, contrast, working meparg long term memory fields. When
features overlap between objects, peaks in theingrkemory field form with higher
overall strength than when features do not oveilags can be seen in action in Figure 27.
The peak at point A in the color working memonydies weaker than the peak in the shape
working memory field below it, because the coloalpés driven by one object’s feature
activation, and the shape peak is driven by twedly activations. Activation in the
working memory field thus serves as a similarignsil.

Long term memory also contributes to a similasighal. Repeated activity at a
feature value in working memory builds a long termamory trace that feeds back into
working memory in future trials. This creates ah@gsimilarity signal for objects with
features that match those seen in previous trials.

A dissimilarity signal is also present in the miodethe overall activation of the
contrast fields. Contrast fields are excited by&lsnput and inhibited by working
memory activation. Thus, they show activation fmattire values that have not previously
been perceived during a trial, which corresponth&odifferences between a pair of

objects.
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Across all of these feature comparison processe=s)gth, width, and timing of
peak activity contribute to final similarity andsdimilarity signals. Differences in strength
between features seen in one versus both objgap®-uthe information in the similarity
signal. The width of activation allows for more naad similarity judgments than binary
distinctions. If peaks are very narrow, then thely only interact when features identically
match. Peaks with width, however, can overlap byiag amounts, allowing for more
informative intermediate similarity and dissimilgrsignals when features only approach
one another. The timing of activation is involvadsimilarity signals through accumulating
long term memory activation. Timing is also invalv@ dissimilarity signals: the same
signal will generate a dissimilarity signal whersdor the first time and a similarity
signal when seen for the second time in a trial.

Dimensional Attention Modulation

The model successfully captured the degree of @rid shape bias in similarity
judgments in its simulations of most individual fo@pants. Several processes were tested
to drive this behavior. The most successful prqdesided in the final version of the
model, controlled dimensional attention by chandhegrelative weights of connections to
the “same” and “different” nodes in the model (Kddnin Figure 25) from different
feature fields. For example, the connection froendblor working memory field to the
“same” node might be strengthened relative to tmnection from the shape memory field
to the “same” node (and likewise for the contrastdifferent” node connections). If so,
the model will be influenced more by color thandimape feature comparisons. This
process occurred only in the explicit similaritycggon portion of the model. Therefore,

object perception, feature comparison, and menepyesentation were unaffected by
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dimensional attention, since it only applied in &glicit similarity decision portion of the
model.

An alternative process placed attentional dimemeg@rlier than feature comparison,
in the low-level visual processing outside of thedel. Dimensions that participants
neglected as less influential were re-scaled tavdieover distinctions between objects. All
features of all objects in less influential dimems for a participant were placed closer
together in the initial input to the model. A comigly neglected dimension would treat
every object as if identical in the neglected disien. This led to overall higher similarity
signals for subjects with strong attentional biabes the model compensated for this by
automatically fitting stronger weights to the “@iféent” node compared to the “same” node
in participants with strong dimensional biases. fidgilt was that neglected dimensions
carried no differential similarity information arlus did not contribute to overall patterns
of similarity judgments. This process implies ttia features of objects in neglected
dimensions never get loaded into working memorpng term memory distinctly, which
provides a means of empirically testing the diffe between this dimensional attention
process versus the node-weight process. The logl-gsual version of dimensional
attention qualitatively fit participants’ behaviptsut did not quantitatively fit as well as the
node-weight process model.

Circular Dimension Awareness Test

Chord and arc-based distance measures were testgoddness of fit to raw
modeling output (not MDS results), as in the encpiranalyses. In all cases, the chord-
based distances fit better than arc-based distahhesreflects the model’s sensitivity to

circular feature dimensions. Circular sensitivigynot surprising in this model, because |
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used circular fields. That is, each feature fiedd Ineural connectivity as if it wrapped into
a cylindrical field.

Model results for the square condition showed arSEMt between modeling
output and arc-predicted responses for the rataglsof 1.08 (chord) versus 1.48 (arc),
and for the same/different task of 0.146 (chord¥us 0.164 (arc). Model results for the
“L” condition showed an RMSE fit between modelingiput and arc-predicted responses
for the ratings task of 1.20 (chord) versus 2.0€)(and for the same/different task of
0.093 (chord) versus 0.147 (arc).

Tests for Tversky Violations

Violations of minimality and triangle inequalitielsd not fit the condition-specific
patterns from behavioral data (Table 2). Howeveth lvere detected by the model, and
the model demonstrated a tendency to show botls typeffect without any explicit fitting
to do so. Three violations of minimality were dégecin group data in the same/different
square condition, and 186 triangle inequalitiesend®tected in the same/different “L”
condition.

The means by which the model captures these balkdsianclear process-wise.
Neural noise may account for some of the resuhis.fact that triangle inequalities were
only found in the “L” condition, however, while Jations of minimality were only found
in the square condition, suggests a source otherjtist noise. Long term memory activity
can also potentially account for these effects.d-amm memory boosts the similarity
signal by exciting working memory. Therefore, aaritcal pair of items seen in an early
trial in the experiment may generate a weaker anityl signal than an almost identical pair
of items seen later on. Feature comparison betyusethe objects in each trial will

generate a stronger similarity signal for the idmtttems, but the additional activation
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from accumulated long term memory in the lated tnay outweigh this difference. This
would lead to a violation of minimality. A similggrocess may explain triangle inequalities.
One leg of a triangle of objects might be seemiearly trial before long term memory
accumulates, and another leg might be seen laterlahg term memory has accumulated.
Neighborhood Density Analysis

All conditions of the modeling results showed effeof neighborhood density. In
the ratings task square condition, neighborhoodaities of object pairs correlated with the
difference between predicted and observed ratihgs 8.093, using the same analysis
method as in Experiments 1-3. In the ratings taslkcHndition, this correlation was r =
0.221. In the same/different task square conditioa correlation was r = 0.153. In the
same/different task “L” condition, the correlativas r = 0.289.

Although the ratings task square results were maakly correlated than
expected, all results were significant at a p $0eel and were in the correct direction
compared to behavioral results. Magnitudes of tations overall were also comparable to
the behavioral magnitudes. These results suggatstith model accurately exaggerates
dissimilarities for objects with many nearby neigtin feature space, similar to
behavioral participants. This is only possible tuéng term memory layers in the model,
which retain memory traces of the features of rdgeseen objects on earlier trials.
Differences Between Square and “L” Conditions

This was not a quantitative test performed on bienal results, but it was a task-
general trend that the two experimental conditiedsto consistent qualitative differences
in modeling results, as in behavior. For example,model successfully captured the

obtuse angle of the “L” in MDS results in the rasrtask, which is not directly explained
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by input feature differences between conditiong mmber of Tversky violations also
varied in the model unevenly by experimental caadit

The model is able to remember and is affectedhbyrtfluence of patterns of
stimuli across trials (like square versus “L” patt® due to its long term memory layers.
The long term memory trace in the square condisavenly distributed over many trials.
This evenly distributed activation sends back eyedmdtributed activation boosts to the
working memory field across trials. In the “L” cadtidn, however, one arm of the “L” is
unevenly dense for each of the two feature dimessfa different arm for each
dimension). Thus, the long term memory traces@psitled toward one extreme of values.
These values get boosted much more often by longrigemory than activation elsewhere
in the feature dimension, and this can lead toattaristic differences between
experimental condition results in the model.
The Fast-Same Effect

The fast-same effect is a tendency in explicit kirty pairwise tasks—primarily
same/different tasks—for “same” responses to hawer reaction times than “different”
responses. Especialigentical objects have the most significant drop in reactiores
(Nickerson, 1972). | passed over testing for tiffisot in empirical data and did not
explicitly fit the DNF model to it for several reass, including it seeming too task-specific
as mentioned previously. Additionally, the effelsb®/s best with conjunctive similarity
rules and high-dimensional stimuli, not disjunctiuées and two-dimensional stimuli like
in Experiment 2 (Farell, 1985). However, | did |dok the basic foundation of this effect
in modeling processes and results. All tasks amditions in the model show faster
reaction times (model simulation steps before asd®g when more “similar’” answers are

given. In the ratings task, square condition, sinty rating and reaction time correlated r
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=-0.25. In the ratings task, “L” condition, r =.30. In the same/different task, square
condition, r = -0.29. In the same/different, “L"radition, r = -0.30.

These results overshoot the fast-same effect's\eiidhe literature, but the
underlying process exists to drive a more realistst-same effect with fine tuning.
Features that match overlap activation in the mddain the visual field onward. Since all
fields have self-excitation feedback loops, highéral activation from overlapping object
features accelerates all peak formation downstifeam the visual field. Peaks form more
quickly, are detected more quickly, and raise DR peaks and attention shifts that trigger
a decision more quickly.

Discussion

Overall, modeling results captured nearly evergdataeffect. A notable exception
was the distribution of Tversky violations of mirafity and triangle inequality among
tasks and conditions. These did not fit the pattéimehavioral results, but the model was
shown capable of demonstrating both types of vimrhat

The successful fitting of other effects of MDS gpand individual patterns,
circular dimension sensitivity, neighborhood densifects, and qualitative differences
between experimental conditions, all indicate thatneural processes implied by the
architecture of the DNF model are plausible, ungiegl mechanisms for a variety of object
similarity judgments behaviors, generalizing acratsieast two types of judgment tasks.

Importantly, the model achieved its fits withoulyreg on a neurally implausible
multidimensional Cartesian representation. The Didfeel instead employs an
architecture that requires additional resourceyg lméarly per each dimension added. The
model also captured behavioral results while actogrior the stability of object

representations as the system autonomously attéadssth object. In some cases,
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working memory stability was central to the meckanof similarity judgments. For
example, when the model builds working memory pgtilese inhibit and destabilize
peaks in the contrast fields, thus changing tretixe signals to similarity and dissimilarity
nodes and tipping the balance towards a similgudgment.

All matches to behavior were also detected in ahitacture with minimal changes
from the model proposed by Schneegans et al. @ssprThe only additions to the model
were the addition of similarity nodes, the gateeyahd the decision field. This implies
rich integration of visual cognitive processes withcesses of similarity judgments. |

expand upon these ties in the conclusions chaptenb
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Table 3: Empirical dimension bias and fitted same/different parameters by participant

Participan
Ratings Square Color : Shape Ratio  Similarity Nod®issimilarity Node
1 0.0¢ 0.087: 0.062:
2 0.1¢ 0.112¢ 0.050(
3 0.0¢ 0.112¢ 0.062¢
4 0.9C 0.112¢ 0.062:
5 0.1: 0.112¢ 0.062¢
6 0.71 0.100( 0.075(
7 12.6( 0.087: 0.062:
Ratings “L"
1 0.3¢€ 0.112¢ 0.075(
2 0.12 0.100( 0.062:
3 1.5¢ 0.112¢ 0.062¢
4 0.0¢ 0.112¢ 0.062¢
5 1.17 0.100( 0.C50C
6 0.1C 0.100( 0.050(
7 0.5¢€ 0.100( 0.050(
8 0.32 0.100( 0.075(
9 0.61 0.112¢ 0.075(
10 1.1¢ 0.087: 0.075(
Same/Diff Square
1 0.81 0.100( 0.062¢
2 4.4¢ 0.087: 0.050(
3 0.8¢ 0.100( 0.062:
4 0.8: 0.087: 0.062¢
5 1.57 0.112¢ 0.075(
6 17.8¢ 0.112¢ 0.075(
7 0.5¢ 0.087: 0.062:
8 3.14 0.087: 0.050(
Same/Diff “L”
1 0.07 0.100( 0.075(
2 2.11 0.100( 0.075(
3 0.57 0.087: 0.062¢
4 10.7¢ 0.087: 0.050(
5 2.2¢€ 0.112¢ 0.062¢
6 0.2z 0.112¢ 0.050(
7 0.31 0.112¢ 0.062:
8 0.37 0.100( 0.050(
9 0.62 0.100( 0.062:
10 1.0Z 0.112¢ 0.062¢
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Table 3, Continued.

SpAM Square Color : Shape Ratio
10.31
0.17
2.5¢
0.41
1.12
0.21
1.04
1.0¢
2.52
0.7t

O oo ~NOO O WN PR

[EEN
o

SpAM “L”

1 0.22
0.0z
0.9t
3.92
1.37
0.7¢
0.1
4.7t
0.3¢
0.17
1.8C

O oo ~NOO Ol WN

e
N

133

www.manaraa.com




Table 4: DNF model parameters.

Global Fields with Globa
Param Inhibition
SimTau 5 attention retinal  -0.8
Tau
Build 500 attention feature -0.5
Tau
Decay 800 attention scene  -0.1
kernel
cutoff 3 pairwise decision  -3.5
Initialization Connections (from field left of table to field top table, “[sigma]/[strength]”
Parameters 1st row = self excitation, 2nd row = self inhibitio
Rest Attn | Attn | Attn J | | EI PairJ
Field Level [BetgRetina| Feat|Sceng¢lOR [Visual[Conti WM [PeaCOS Sim |Dissim|GatgDecigLTM
Attn 4/8
Retinal -5 21 8-1 2/0.4|4/.5] 4/1.5
Attn
Feat -5 2 4/5 | 4/2 40.21 4/4 |212.6
Attn
Scene 512 4/4 4/-75 1.3
4/20
IOR 5 | 4] 4-10 8/-17
4175
Visual -5 2 | 4/0.8|4/1.25 4/0.1¢ 8/-7.5 |4/1.25) 2/0.25
4/18
Contras{ -5 4 4/1.79 8/-20 fitted
2/21
WM -5 4 4/1| 4/1 3/-16|8/-25 fitted 1:1
Peak -5 4 4 115H
COS -5 4 1/-4 1/2.6 4
Sim -2 1 2 10
Dissim -2 1 2 10
Gate -6 1 02| 30
Pair
Decis -46 | 1.5 3/75
LTM 0 4/3
self-connection

changed from Schneegans, et
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Table 5: A summary of modeling results.

DNF Model — Ratings DNF Model — Same/Different
Test Square “Lr Square “L”

Systematic, no Systematic, no  Somewhat noisy, noNoisy, curvature,

curvature, some curvature, slight curvature, no obviolshape bias in one

shape bias, many shape bias, no  dimension bias, sonarm, several value
Group MDS  value confusions value confusions value confusion confusions

Same ratios as in empirical data

Individual MDS

Circular

Dimension 1.08 chord RMSE 1.20 chord RMSE 0.146 chord RMSE 0.009 chord RMS
Measure 1.48 arc RMSE 2.07 arc RMSE 0.164 arc RMSE  0.147 arc RMSE
Triangle

Inequalities 0% of triplets 0% of triplets 0% aiptets 33.2% of triplets
Violations of

Minimality 0% of trials 0% of trials 0.05% of trigl 0% of trials
Neighborhood

Density r=0.093 r=0.221 r=0.153 r=0.289
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CHAPTER 7

CONCLUSIONS

This dissertation aimed to fill the need in theealbjsimilarity judgment literature for a
broadly applicable neural-level model of core samil processes. | first determined a set
of similarity judgment behaviors most likely to inelicative of core similarity processes

via a set of three representative and diverse aiityiljudgment tasks and a commons set of
stimuli. | examined data from all three tasks fog presence of similarity effects

commonly reported in the literature such as atbeati tuning and the triangle inequality,
and for signatures of the specific stimuli usech®#ors common to all tasks were most
likely to derive from processes performed univdysatross similarity judgment contexts.

A DNF model of change detection (Schneegans, Speficgchoner, in press)
adapted to simulate similarity judgments succeadedpturing the target task-general
behaviors: feature comparison effects, dimensiattahtion, neighborhood density effects,
and qualitative differences between square andccttiditions. In doing so, the model
demonstrated the plausibility of a set of core aklavel processes underlying object
similarity judgment. In the model, similarity angssimilarity signals are inherent
byproducts of the dynamics of creating and maimgimvorking memory representations
of objects.

The DNF model also captured a number of non-tasleigeg behaviors to which it
was not specifically fitted, including violation$§ minimality, triangle inequalities, better
fits for chord-based distance measures, and, teelygtthe fast-same effect. Several
possible processes behind these model resultsdisngssed above, but these fits may also

imply a relationship or continuum between “taskesfi@ and “task-general” behaviors. In
136

www.manaraa.com



this chapter, | address theoretical implicationthefempirical results themselves, the
importance of the processes and architecture ugételmodel to best fit those results, and
directions for future research.
Implications

Empirical Implications

The three empirical tasks in this dissertatiowveetto establish the task-generality
of a variety of similarity judgment behaviors. Tagdneral behaviors are the most likely
indicators of core similarity processes, thosevahé to similarity regardless of response
format, specific variants of similarity definitionsr situational factors like time pressure.
Task-general processes do not solely define siyilidgments and are not necessarily
the largest contributors to any given similaritggument, but they are critical starting
points for understanding the processes that umdgrhilarity judgment, because they
unify and connect research efforts across diffesentlarity judgment contexts. Task-
general processes in explicit similarity judgmeants also likely to be broadly involved in
implicit similarity judgments as components of tasike categorization or word learning.

Overall, the empirical data presented here didakaewumber of common
behavioral effects across the three different gintyl judgment tasks. The strongest task-
general factor in similarity judgments observedasrExperiments 1-3 was the influence
of feature comparison in similarity judgments. Qitgewere consistently judged in
similarity at least somewhat proportionally to theistances from one another along
relevant dimensions in feature space. Previous Wwaskestablished feature comparison as
a task-general factor, in series of experimenth watmmon stimuli and analyses designed
to examine this effect (Hout, et. al, 2013; Goldst01994b), and the results of the present

experiments replicated these findings. All parteits in all tasks and conditions showed
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featural organization, aside from four participants®o showed disorganized patterns of
judgment. Thus, all patterns of similarity judgméehavior in the empirical data
correlated at least partially with feature distan@eiggesting that feature comparison is an
inherent and unavoidable step in object comparison.

Unlike feature comparison, other behaviors teseatiriot been previously
established as task-general, but were observedsatite experiments in this dissertation to
show consistent involvement in similarity judgmefhe most consistent of these were
attentional modulation of feature dimensions, neahood density effects, and systematic
differences between judgments in the square vétsSusonditions. Some degree of
consistency was also observed in measures of aegg@f circular dimensions, violations
of minimality in similarity judgments, and triangieequalities.

Dimensional attention biases were consistently mfeskacross many individuals in
each task tested in this dissertation. Many pasitis were individually biased to weight
either color or shape feature distances as a laggeributor to final similarity judgments,
as measured by ratio of average distances betvimgle-feature-step neighbors along one
dimension versus the other, taken from the MDStgwla. These results indicate that
differences in the amount of influence a particééature dimensions has in similarity
judgments is not exclusively a result of biasetsk instructions or a side effect of
response type, but rather is a fundamental faotoomparing objects across various task
contexts. Despite showing consistent dimensioresdds, however, participants were not
exclusively biased to either the color or shapeettisions. This suggests that dimensional
attention is not only a task-general effect, bat thmay not be specific to particular
dimensions, either. Given that only two dimensioese tested here, however, data

involving a larger number of dimensions is necegssafurther explore the generality of
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this attentional effect. In particular, the currerperiments tested only separable, circular
dimensions. This should ideally be expanded taynaieand non-circular dimensions in
future studies.

Neighborhood density effects were found to comptedeneralize across tested
tasks and conditions, strongly implying that tlsi@icore behavioral pattern in similarity
judgment. Neighborhood density is an emergent mdithe featural relationships
between a large set of objects in a stimulus seddse on any given trial of either the
pairwise or same/different task only two stimuliree@resented. This suggests that long
term memory is a strong and consistent influencesscmany types of similarity
judgments. In SpAM, long term memory was not nemalysimplicated in the observed
neighborhood density effect: since all objects was#le on screen at once; enabling
relationships between objects to also have beeemlperceptually or through working
memory. SpAM does not contradict the definite int@nce of long term memory in the
other tasks, however, and the results do not naghssnply that long term memory might
not have been used in SpAM.

In importance of long term memory also suggestethbyact that the square and
“L” conditions affected similarity judgments in dadisks, beyond the differences predicted
by the raw feature differences in these two cood#i The “L” condition showed more
distortions overall from Cartesian predictions Juriing noisier fits, feature dimensions
that were not always shown by MDS as being orthafjto one another, and more
confusions between neighboring feature values.tWbeconditions also showed dramatic
differences in the numbers of different types oft€sian violations (minimality and
triangle equality) and in shape versus color dirgerad attention bias between them.

Differences between conditions in the two pairvasks necessarily require that
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participants were influenced by long term memorsasce the difference between the two
conditions (beyond raw feature distances) was datgctable across many trials. Again, in
SpAM, working memory and ongoing perceptual infotimmmay or may not have
replaced the role of long term memory in drivinggl differences between conditions.
Additional manipulations would be required to resathis ambiguity, such as only subsets
of objects being arranged in each of several msttisize SpAM trials.

Participants showed awareness of circular dimesdiothe pairwise tasks from
Experiments 1 and 2.Participants also showed evalehbeing aware of circular
dimensions in the “L” condition of the SpAM taskhdse findings suggest that circular
dimensions are processed and/or represented inthvatyare fundamentally unique
compared to linear dimensions. The exact natuexiant of this difference is difficult to
assess, however, with data drawn exclusively frooular dimensions. Future studies
using identical tasks and analyses but one or tirgear dimensions are necessary to better
understand the nature and extent of circular dimensrocessing.

Despite being commonly cited behaviors, triangegjinlities and violations of
minimality have not been systematically demonstiateross similarity judgment tasks,
and in fact, published evidence of these effectsiomng at all is scarce. Shepard (1964)
tested for triangle inequality across three taBls did not control for common stimuli and
suggested that the difference in stimuli may haaenlthe reason for finding inequalities
only in his third experiment. The present experitaehowever, provide a number of
guantitative observations of triangle inequalitesl violations of minimality across both
pairwise tasks. SpAM, with a Cartesian answer spamdd not show these effects within
a single trial. Task-generality of these effectaaes ambiguous but is a promising

possibility. The implications for cognitive process are less clear than with other
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behavioral effects, however. Violations of mininaaknd triangle inequalities could result
purely from noise and can also be explained byarde array of cognitive factors
suggested by previous similarity models, from sedée(Nosofsky, 1991) to distance
measures (Pothos, et al., 2013) to mere orderesieptation (Tversky, 1977).

Alignability was found to be mostly tasecific to the original effects derived
from the literature (Markman & Gentner, 1993). Aladility behavior did not consistently
generalize to the rated similarity judgment tas#t esas inconsistent between conditions in
SpAM. The effect may depend on the higher dimeradistimuli and possibly on tasks
involving listing differences, like in the sourdtetature. Regardless of the exact factor(s)
missing from Experiments 1 and 3, results sugdnedtalignability effects in the DNF
framework would be at least partially dependentrupdayer of processing beyond the
core dynamics between attention, working memorg,lang term memory. Just as the
pairwise tasks rely on a set of nodes and a decigt for ratings-type responses, verbal
tasks like listing differences would likely depeowl separate, verbal response fields whose
dynamics may drive alignability effects. Listingfdrences also requires identifying a
specific feature value, not just adding acrosaetivation of fields, and the different types
of peak detector and localization mechanics inviivethis may also contribute to the
alignability effect.

Modeling Implications

A primary contribution of the current work is inesgpfying a neural process model
of object similarity judgments. The processes efrtiodel and the parameters that most
successfully captured similarity data have theoa¢implications for the psychological

processes underlying human similarity judgmentsratated cognitive abilities.
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Core Similarity Processes of Feature Comparisorlhe goal of choosing task-
general similarity judgment behaviors as initialdabng targets was to increase the
likelihood of discovering “core” similarity process. A core set of processes was
suggested by the DNF model. Feature comparisonsfomaamentally drove similarity
judgments in the model. This is consistent withsemrg empirical evidence. Feature
comparison is ubiquitous across all models of sintyf judgments, even those that share
almost no other characteristics. From Pothos,.st@013) abstract projection model in
multidimensional feature space to Kruschke’s (1998)nectionist model to Hahn, Chater,
and Richardson’s (2003) object transformation moaeitric differences between features
ultimately drive the basis of similarity across tierature. Additionally, the particular
dynamics of overlapping activation peaks in the DiNbdel are consistent with the
exponential scaling of similarity as a functionfeéture distance, which is well-known
empirically (Shepard, 1987; Nosofsky, 1991). Thegiky of activity under a Gaussian
curve scales exponentially with distance from teter of the peak, so if feature
comparison derives from the amount of overlappiegral activity along feature fields, as
in the DNF model, this can explain the often obsdrgxponential relationship between
raw feature distance and perceived similarity.

In the DNF model, feature comparisons were sinyilaegntral to similarity
judgment, because they were captured by basiaitttens between long term memory,
working memory, and perception of features. Ovegilag features lead to strong similarity
signals, captured in the working memory fields.tbess present only in the visual field
and not in working memory lead to contrast peaks signal dissimilarity. The strength of
peaks across these fields, the widths of peakstrentime course of peak formation and

decay were all observed to be important to sintiigudgments in the model.
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This set of processes is remarkable in that itiesghat similarity and dissimilarity
signals may be automatic and integral to the piogof objects in general. Visual,
contrast, and working memory feature fields werefietds unique to this similarity model
or the change detection DNF model (Schneegansc8pefa Schéner, in press; Johnson,
et al., 2009), but are instead part of the basié@ithitecture for object processing.
Therefore, similarity may be involved as an autocayproduct ofany object-based task
like categorization, word learning, or analogieadsoning. This may even be relevant for
tasks where featural similarity is not explicithwblved or is distracting to a behavioral
goal. For example, participants could be expliditistructed and rewarded for categorizing
objects by their semantic relationships, such @s deing categorized with leashes and
bones andhot with other animals that look like dogs. Superfi¢gatural similarities and
differences between objects could then align withdorrect answers or not, and their
tendency to facilitate or interfere with performarwould indicate the degree of
automaticity of feature comparison in non-featuasdsl object tasks.

Dimensional Attention ProcessAs discussed in the previous chapter, it is unclear
which potential process in the DNF model drives olation of attention to feature
dimensions. The best fits suggest that dimensionsnadulated separately from feature
comparison and working memory formation, occurasgchanges in weights in the
connections from the object processing fields todimilarity and dissimilarity decision
nodes. If so, this would further support the conaéhe feature comparison processes in
the DNF being a core, initial process of similaritymly modulated downstream by
dimensional biases. This possibility only fits sevhat better than the alternative of
dimensional attention occurring at the level ofysisual processing, before working

memory and feature comparison processes. Thisidigm is important in establishing the
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sequence of processes in object similarity judgsent

It is possible to empirically distinguish the twiferent dimensional attention
processes of node weights versus early visual psiog biases. Participants could be run
on a similarity judgment task like the pairwisamgs task, then tested for their memories
of feature values along different feature dimensidhattentional modulation of
dimensions occurgefore basic object processing and memory loading, theticgaants
who show strong biases to consider one dimengkerslape in similarity ratings task
should show the same biases in their memorieseofelative scaling of feature distances
along different dimensions. If attentional modwatbccursafter basic object processing,
then even participants with strong similarity judgrhbiases should not show the same
biases in their memories of features observed.

Long Term Memory. Long term memory in the DNF model is capable of
explaining differences between the square and Xpeeimental conditions that go beyond
the different sets of pairwise feature comparidarteese two object distributions. In the
“L” condition, long term memory can accumulate esgky large amounts of activation at
one end of each feature dimension that is assdcidta the arm of the “L” perpendicular
to that dimension. If one arm of the “L” is moshijue objects, then the blue end of the
color long term memory field will build up more agttion than the orange end. In the
square condition, long term memory activation agdenly on average.

The buildup in the “L” condition can explain inciatal differences between the two
experimental conditions, but a deeper theoretioatjbility is that this uneven long term
memory buildup could be the initial basis for paestategory formation. Even in
situations where categories are not specified, daorerelevant to a task, like Experiments

1-3 here, irregularities and clusters of objects &t#l exist. When activity clusters in one
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part of the long term memory field it can boost axdggerate similarity ratings of
subsequent matching items. This acts like a rudiangrcategory, implying higher
similarity for new matches to the cluster than siem feature comparison alone would
predict. This process could be related to thestieail learning known to play a role in, for
example, early word learning (Saffran, Asline, &Wmort, 1996; Kloos & Sloutsky, 2008).

Consistency with Other Models.The present DNF model of object similarity
judgments employs processes consistent with preilouF models of other cognitive
tasks of change detection, executive control, @telgory learning. The DNF similarity
model also relates to processes and architectome ion-DNF models like the feature-
integration theory (Treisman & Gelade, 1980) ancd2&RHarris & Rehder, 2011). This
provides convergent evidence for at least the object perception and memory
interactions suggested critical to similarity judgms in the model.

The object similarity model here is most relatethis change detection DNF
models from which it was derived (Johnson, et28lQ9; Schneegans, Spencer & Schéner,
in press). Although long term memory and the sintifalecision nodes and fields were
added, and although a number of parameter valuesai@nged in magnitude, no other
changes were made to the original architecturecandectivity of the change detection
model. The largest parameter change by a largeimasas to the strength of the feedback
from featural attention to the visual perceptiaidj which was lowered from 1.25 to 0.20.
This parameter was lowered to allow more contr@rattention from the spatial inhibition
of return field. However, the feedback connect®still strong enough to also perform the
role it did in the change detection model: syncimiog initial attention to a consistent
object, rather than spatial and featural fieldshdaging able to attend to different objects.

Thus, all of the fundamental steps of object prsicesremain the same between the two
145

www.manaraa.com



models, and the working memory and contrast fieftisctively code for similarity and
dissimilarity, respectively, in both cases.

Buss’ (2013) DNF model of executive control in theensional change card sort
(DCCS) task also shows some of the same procekaégsmional modulation and long
term memory as the DNF model of object similaritgigments. In the DCCS task,
participants sort cards with two-dimensional stinaglcording to one or the other of the
two dimensions. The rules for which dimension nratssvitch during the task. Three-year-
old, but not 4-year-old, children tend to perseteemm the previous rule after the rule
switches. The DCCS model addresses dimensionabpiasodulating the overall resting
level of space / feature fields. The model bodstsfield corresponding to the feature of
the current sorting rule. This boosts the likelidl@s sorting by that dimension. This is
analogous to the attentional mechanism in the ptessnilarity model, where all
activity—similarity and dissimilarity signals—in éhparticipant’s preferred dimension are
boosted relative to that in the non-preferred disiam The DCCS model is then also
influenced by remaining memory traces left ovenfn@cent trials. Memories of sorting
according to a different rule may or may not outyheihe boost given by the current
instructions, and this fact can be leveraged matthildren to overcome their rule
perseveration in the DCCS task with memory maniparia (Perone, Molitor, Spencer, &
Samuelson, 2014). This is the same process by vidmghterm memory boosts the
similarity signal in the present model, and thughesprocess by which the square and “L”
conditions lead to qualitatively different outconiesm lingering memory traces.

A previous DNF model of taxonomic word learning(Bgnkins, Samuelson, &
Spencer, 2015) matches the similarity portion effdature comparison dynamics in the

current model. The word learning model does notieily simulate a contrast field and so
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does not include an inherent dissimilarity sigihait neural dynamics in working memory
function similarly to the current model. The woeadining model was developed to capture
a behavior called the “suspicious coincidence &ffi@bere a novel category label learned
with one exemplar is generalized more broadly tharsame label learned with three
simultaneously presented exemplars (Xu & Tenenb2@®7). The reverse effect occurs
for three sequentially presented exemplars, leaimgrrower generalization (Spencer,
Perone, Smith, & Samuelson, 2012). The DNF modéi@kuspicious coincidence effect
captured the behavior as a function of changesdithvibetween visual and working
memory fields. Simultaneously presented objectsriach in features interact
dynamically via lateral inhibition (see Figure 24)d narrow one another’s perceptual
representations (see also Schneegans, et aless;plohnson, et al., 2009). The narrower
projection to working memory then overlaps with &vieatures of the test items presented
for generalization. The exemplars and test obj@atsherefore judged to be less similar,
and generalization of the novel label does not nccu

The DNF is also consistent with models outsidehef@DNF literature. Treisman
and Gelade’s (1980) feature-integration model mtsdi system where different separable
feature dimensions are represented independengigrig visual processing. Most feature
dimensions are represented in Triesman and Gelau&lel as maps of values of those
feature at different points in space. This is gy\&@milar system to feature-space fields in
the DNF architecture, although with less poterdraks-talk between feature dimensions
and fewer dimension-specific resources like indraidfeature dimension attention fields.
Both models achieve the property of avoiding impible exponential resource usage by
treating dimensions in parallel in this way.

KRES (Harrris & Rehder, 2011) also shares a nurabarchitectural similarities to
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the present DNF model. KRES is oriented towardwampy categorization behavior, but it
simulates neural units with dimensional interactignamics similarly to a DNF 1-
dimensional neural field. A fully connected dynarfgature dimension allows KRES, like
DNF models, to fluidly blend and overlap represtaote of objects in both strength and
shaped patterns of neural activation, providingveogent evidence for the importance of
strength/width dynamics in object comparison.
Limitations of Empirical and Model Implications

Stimulus Limitations. In order to isolate the variable of similarity judgnt task,
stimuli were held constant across all three taskhis dissertation. The stimuli used were
organized by hue and shape. Both of these dimessiene perceptually circular. Both
were also separable from one another (Shepard,)1@&lnot a possibility that the
behavioral effects are only observed in these damoas: all of the behaviors studied have
previously been observed more generally acrosareaimensions. Neighborhood density
effects were shown with Morse code, letter gly@m] musical intervals early in the
similarity literature (Krumhansl, 1978); featurengparison is observed across feature
dimensions; alignability effects have been obsewigd stimuli ranging from cartoon
creature drawings varying along body part shapddextures (Goldstone, 1994a) to
complex stimulus comparisons like atoms alignedhwalar systems based on functional
dimensions (revolving motions, Gentner, 1983). Ehashaviors are therefore not feature
dimension specific in any narrow way, such as appgdor color but not orientation.

However, the possibility remains for differeshsses of feature dimensions to be
potentially relevant to similarity judgment processResearchers often intentionally seek
separable dimensions in a task for easier isolati@malysis, so the majority of the

previous literature and diversity of dimensions tiered above has used separable
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dimensions within tasks. Integral dimensions testgdiltaneously have a strong
possibility of revealing different and theoretigalnportant patterns, contradicting the
task-generality of specific behaviors, or suggestiaw cognitive processes. An example
of a set of integral dimensions is color hue aridrcgaturation.

Behavioral similarity judgments along integral éinsions are known to affect
similarity judgments in some respects, such asdtbetter to Euclidean than to city-block
feature distance measures (Shepard, 1964; Shd@&d). Integral dimensions also pose
theoretical difficulties for existing similarity ndels of several types. Models with
Cartesian feature spaces generally assume tHatalre dimensions are orthogonal to one
another, but integral dimensions are not completelgpendent, introducing geometric
complications. Similarly, models that tally featsi@versky, 1977; Johannesson, 2000)
implicitly assume independent dimensions and daeastly account for integral
dimensions.

In the DNF model, each feature dimension is assumédve a set of attention,
contrast, and working memory fields, and featureatisions are bound across space.
Integral dimensions do not clearly fit into thiglaitecture. Different possibilities exist for
how to treat integral dimensions. Feature dimersslikse hue and saturation may have
their own sets of fields, but share additional @mstions not shared by other feature
dimensions. Integral dimensions may also be cadlat an early visual perceptual level,
prior to the types of neural processes capturédisnDNF model. Alternatively, some
small sets of feature dimensions might form highierensional fields in the DNF
architecture, such as hue by saturation by spatdsfiThese may require millions of
neural units rather than thousands, but this lisngturally plausible as long as integral

dimensions cluster together in small groups, aecettponential resource usage stops at
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exponents of two or three. Addressing these isatiles2quire additional testing using
integral feature stimuli, while also controlling fiask differences and using common
analyses for behavioral effects, as was done Mwdeling efforts can then suggest which
of the various neural process possibilities aclsglie best fits with the least complexity.

Another limitation based on stimuli is that it isalear to what extent circular
dimensions influenced the outcome of this work, nmgortantly for the circular
dimension awareness tests. Non-circular dimengibadrightness, line thickness, or
spatial frequency would be informative as a basalihcomparison in conjunction with or
to the exclusion of circular dimensions like hue ahape used in this project. Hout,
Goldinger, and Ferguson (2013) used two stimults see that varied along two linear
dimensions and another that varied along a linedraacircular dimension. The feature
dimensions were not guaranteed to be perceptugliglehowever. This is critical for
circular dimension awareness analysis, becausdithansion is not perceptually
controlled, feature steps may follow chord-basetiagices coincidentally for other reasons
than circular dimension awareness. Thus, it is nt@mb to test feature dimensions that are
both varied in circularity and all psychometricatigntrolled for this analysis.

SpAM Limitations. SpAM limited some of the analyses in this projecaaesult
of its Cartesian constraints. In particular, chbeded distance measures, violations of
minimality, and triangle inequalities were impodsito observe in any individual SpAM
solution. The Cartesian constraints are not nedgsseerent to SpAM in all
implementations, however. If not all objects aregented simultaneously in a single trial,
SpAM is capable of showing non-Cartesian similguiygments within the data from a
single participant. Kriegeskorte and Mur (2012)ald® a detailed quantitative

methodology for approaching this methodology. Fadarger set of objects is chosen than
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sixteen. Then a number of subsets of the largecobgt are presented on different SpAM
trials. After each trial, software analyzes thecplaents online and chooses the next set of
stimuli in order to expand upon ambiguous or dgnskeistered groups of placed items in
previous trials. This allows object pairs that wpreviously underspecified to be more of
the direct focus of the next trial, mathematicalpproaching the least strained overall
solution. Kriegeskorte and Mur propose this metasdnerely an efficient and better
fitting means of data collection on large stimudess, but the minimally strained final
solution space is also ideal for the current projelinimal strain most closely approaches
the unconstrained characteristic of the pairwisglarity judgment tasks. Since objects are
distributed over trials in different combinatiotisis also allows for the same pairs to
conflict with themselves or change in rating oweret, making behaviors possible like
asymmetry effects, triangle inequalities, violasaf minimality, and best fits to chord-
based distance measures in a single participaatss d
Future Directions

The current DNF model captures a variety of comalarity judgment behaviors. A
number of opportunities exist for future improvertseand expansion of this core to
explain a more comprehensive array of similaritigdgors from a neural process
perspective. Both additional empirical data and efiad analyses and processes are
implied by the results of the findings from thissrtation.
Task Specific Effects

The current model was adapted to initially captask-general effects of object
similarity judgments, due to task-general effe@mb most likely to be robust effects
driven by core processes appropriate for the ifesation of a neural process model. Task-

specific behaviors are equally important for untierding similarity, however, and with a
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model anchored to plausible core processes, cagtorore nuanced and contextual
behaviors is a feasible next step. There are maskydpecific similarity behaviors in the
literature. Here, | focus on one example mentigorediously in this dissertation: the
alignability effect. The empirical data is well-kmn, and future steps would involve an
attempt to capture these effects directly in theFDihbdel of similarity developed here.

Alignability Effect. The alignability effect (Gentner, 1983; MarkmarG&ntner,
1993) was inconsistent in the experimental data fcbapters 3-5, but remains a consistent
and important effect in it's the effect’s origir@ntext: listing differences between
complex naturalistic stimuli. The DNF model coulatgntially capture the effect
consistently under these conditions. If the DNF etadere given complex stimuli that are
not alignable, it would form a large number of cast peaks. In the case of complex
stimuli, several contrast peaks might form everminisingle feature dimensions. A dog
and a toaster are not just different in textureytbach involve multiple textures, none of
which are shared by the other. A texture contiatl fnay therefore have ten peaks
forming at once while comparing these objects. €msaks can blur and blend, and this
can make it difficult to distinctly pull out any erof them or its maximal value cognitively.
This would interfere with the task of listing exptidifferences.

Objects that are alignable, though, like a hydroggem and a solar system, would
create far fewer contrast peaks. The onesdidltill form, like a difference in size, would
be sparser and less confused with other peaksths imon-alignable object example.
These differences might therefore be easier to@#pllist due to the better isolation of
peaks. This hypothesis could be quantitativelyegkstith an appropriate motor output

simulation for “explicitly naming differences” ilné DNF model.
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Developmental Trajectories

Dynamic neural field models have a history of aapg developmental trajectories
of cognitive phenomena (Buss, 2013; Spencer, €2@0.7; Schutte & Spencer, 2009;
Perone, Simmering, & Spencer, 2011; Thelen & SnMi#®4; Thelen & Ulrich, 1991). A
possible route for future research in similaribgn, is to apply the present DNF model to
investigating how object similarity judgments ufaver development at a neural process
level.

Buss (2013), in the DCCS DNF model described abswggested that the ability
to suppress the effect of long term memory actigitgnges over development, and that
this explains an age-based effect in perseveraiitite dimensional change card sort task
when sorting rules are switched. If the communarabetween long term memory fields
and working memory fields is difficult to supprassyoung children, then it is also likely
that the communication between working memory feddd contrast fields or visual fields
and contrast or working memory fields is more asldifficult to suppress by age. These
connections exist along the same axis of communitat the model as long term to
working memory connections. The experiments suggesbove—designed to look for
feature comparison effects in tasks that don't iregfeatural similarity—should also show
particularly strong developmental trajectorieshibthypothesis is correct. Young children,
compared to adults, should show stronger influen€ésatural similarity in tasks that do
not require feature comparison.

The ability to suppress activity between featuedds in the model is also likely to
develop gradually over development, since | obskexedence in adults of difficulty
suppressing long term memory activation (in a nubifecult task than the basic DCCS). In

the same/different similarity judgment experimgratticipants were influenced by long
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term memories of previous trials, as evidenceddmyesbehavioral differences between
square and “L” conditions and by neighborhood dgreffects. Both experimental
condition and neighborhood density are irrelevartask instructions: participants can
ignore both and still achieve perfect accuracyhatask. These factors are therefore at best
distracting to good performance. The fact thateHe=havioral patterns were observed in
spite of instructions suggests that even the goduticipants in Experiment 2 were unable
to fully suppress long term memory to working meynoonnections. Any developmental
trend, therefore, is probably not sudden or absphrtd should follow a gradual trajectory.
The spatial precision hypothesis (Spencer, e@07; Schutte & Spencer, 2009) is
another developmental concept derived from DNF risoti@t may be relevant to
similarity judgments. The hypothesis is that cteldtend to form and maintain wider, less
distinct, less precise peaks of activation, whdalts can form either wide or narrow,
strong, and precise peaks by comparison. In tefresralarity judgments in the present
model, wider peaks should lead to more gradual@ésim similarity judgments as objects
move further apart in feature space. Very narroakpejuickly stop overlapping with only
small distance from one another along a featuredgion, leading to more of a binary
signal. Wide peaks continue to overlap even akeléegture value differences, but
gradually less so with distance. Wider peaks shaldd lead to clearer exponential scaling
of similarity judgments as feature value distantanges, since exponential scaling is
likely due to the dynamics of overlapping Gaussiativity patterns. Wider peaks may also
imply more holistic similarity judgments that takeo account all feature dimensions at
once, because with wider peaks, it is more diffiéod two objects to not influence
similarity or dissimilarity signals in a meaningfubhy along every relevant feature

dimension: even changes in very different feataredikely to overlap in neural fields and
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still lead to changes in similarity judgments. Aistic to dimensional shift in similarity
judgments over development is a known behaviofate{Smith & Kemler, 1977), and
future modeling work can establish whether spatiatision may explain such a
developmental trend from a neural process levebtiAer possible contributing factor is
dimensional attention processes (Perry & Samuel¥@i), already captured in the DNF
model.

Rule-Based Similarity

Sometimes, similarity is defined by explicit ruld$e conjunctive and disjunctive
definitions of same/different pairwise similaritgeaexamples of explicit similarity rules. In
conjunction, similarity is defined as an identioatch only, and in disjunction, it is
defined as a match along one or more dimensiores DNF model captures this type of
rule with different relative weightings of the caations between neural fields for different
features and the similarity and dissimilarity demsnodes. A heavy similarity node
weighting allows any one matching dimension to éoac'same” decision, representing
disjunctive similarity. A weakly weighted similayihode requires the combined activation
of matches along all dimensions to drive a “sanegislon, representative conjunctive
similarity.

Other types of rule-based similarity are possérd common. Categories and
taxonomies are often defined and compared accotdinges that draw distinctions at
specific featurealues. This is more complex than a dimension-basedlikéan the
DCCS model (Buss, 2013nstead of raising the resting level of an entiraghsion, only
a subset of values must be emphasized to the éxclokothers within a dimension. A
“chair” might fall on one side of a width featuraretnsion, while a “bench” might fall on

another, and the two could be judged to be disamaWen if they match along many other
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dimensions like material and color. The differenbetveen categories like benches and
chairs could be learned in the model over manwiddal learned exemplars. The method
for representing rules in the DNF as, for examgmken instructions acted on seconds
later, however, is less clear. The resting levedaif of a field could be raised, but the
neural connectivity may be implausible for thisutmn. More likely, dynamic activity
from a field related to propositional interpretasoor relationships could temporarily drive
heightened activation in one portion of a featie&lfbut not another.

Overall Conclusions

This dissertation presents the first neural procesdel of object similarity
judgments. The model met its initial goals of destaating neural processes underlying
object similarity judgments while using plausibla@unts of neural resources, capturing
real time memory dynamics, and suggesting the@letmnnections to related neural
process work. In the course of developing and amadythis model, some broader
guestions have also been raised about theoretgats underlying object similarity
judgment.

Despite the large amount of empirical and thecaktiork in the field, a clear
definition of what psychological similariig, exactly, is still elusive. Similarity, even
among objects in particular, takes many surfacellfarms, from a component of
categorization decisions to explicit rating judgnseto a basis of known object
identification. Currently perceived objects cansbailar to one another, as can a perceived
object and a remembered one or two or more objfexts memory with no perceptual
input. Similarity could theoretically be a set @Hhaviors that result from related but not
identical processes across different tasks, ofaiityl assessment could be a central

phenomenon that occurs prior to any task-speatfgnitive processes.
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The current DNF model offers new evidence as teiaet extent and meaning of
object similarity. The model suggests that feataaparison processes are fundamental to
object perception itself. Similarity signals in ttm@del result from basic dynamic
interactions between attention, working memory, l@ng-term memory that occur as any
perceived objects are loaded into memory. Thergtofeature-comparison component of
object similarity may be central to all behaviargalving object comparison and can
potentially be considered a core aspect of objedtagity in general.

A full account of object similarity, however, alswludes processes more specific
to certain types of tasks and contexts. The aligjibabffect, violations of minimality,
triangle inequality, and different means of measysgimilarity within circular dimensions
are examples of behavioral patterns that seemide @ronly a subset of similarity
judgment situations. The distinction between taskegal and task-specific processes is not
a stark, binary one, however. Most likely, processdst along a continuum of task-
generality. The fact that the DNF model capturediaber of similarity behaviors to
which it was never fitted suggests that many o$éhleehaviors are closely related to or
derivative from core processes like feature congparand dimensional attention
modulation.

Overall, the current investigation suggests th@alsimilarity is a phenomenon
that has deep, fundamental roots in object cognitiggeneral, but also still an extensive
and diverse set of specialized machinery and psesef®r specific needs and applications.
Future research and modeling work, especially woidapture more task-specific
behaviors in the DNF model, will reveal furtheraikt about the relationships, shared
components, or connections between core and pegipbigect processes and the depth,

extent, and consistency of similarity perceptiothia brain.
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The DNF similarity model also relates to more gah#reoretical themes from
across cognition, several of which have been redelay a shared neural implementation
between models. Similarity may show broad develogaidrajectories as predicted by the
spatial precision hypothesis; similarity may retyexecutive control and conscious
suppression (or lack thereof) of automatic procesike in the task switching literature;
and similarity may be implicated in or conflatedtwstatistical learning processes. As the
present neural process model of similarity is ferttieveloped, it will continue to benefit

from and offer insights into a growing unified naluaccount of featural cognition.
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